Assignments for the lecture on

Free Probability
Winter term 2018/19

Assignment 7

Hand in on Wednesday, 12.12.18, before the lecture.

Exercise 1 (10 points).

1) Show that the Catalan numbers are exponentially bounded by

$$
C_{n} \leq 4^{n} \quad \text { for all } n \in \mathbb{N} \text {. }
$$

2) Show that we have for the Möbius function on $N C$ that

$$
\left|\mu\left(0_{n}, \pi\right)\right| \leq 4^{n} \quad \text { for all } n \in \mathbb{N} \text { and all } \pi \in N C(n)
$$

[Hint: use the multiplicativity of the Möbius function and the known value of the Möbius function $\mu\left(0_{n}, 1_{n}\right)=(-1)^{n-1} C_{n-1}$.]

Exercise 2 (10 points +5 points*).
The complementation map $K: N C(n) \rightarrow N C(n)$ is defined as follows: We consider additional numbers $\overline{1}, \overline{2}, \ldots, \bar{n}$ and interlace them with $1, \ldots, n$ in the following alternating way:

$$
1 \overline{1} 2 \overline{2} 3 \overline{3} \ldots n \bar{n} .
$$

Let $\pi \in N C(n)$ be a non-crossing partition of $\{1, \ldots, n\}$. Then its Kreweras complement $K(\pi) \in N C(\overline{1}, \overline{2}, \ldots, \bar{n}) \cong N C(n)$ is defined to be the biggest element among those $\sigma \in N C(\overline{1}, \overline{2}, \ldots, \bar{n})$ which have the property that $\pi \cup \sigma \in N C(1, \overline{1}, 2, \overline{2}, \ldots, n, \bar{n})$.
(i) Show that $K: N C(n) \rightarrow N C(n)$ is a bijection and a lattice anti-isomorphism, i.e., $\pi \leq \sigma$ implies $K(\pi) \geq K(\sigma)$.
(ii) As a consequence from (1) we have that

$$
\mu\left(\pi, 1_{n}\right)=\mu\left(K\left(0_{n}\right), K(\pi)\right) \quad \text { for } \pi \in N C(n)
$$

Show from this that we have

$$
\left|\mu\left(\pi, 1_{n}\right)\right| \leq 4^{n} \quad \text { for all } n \in \mathbb{N} \text { and all } \pi \in N C(n)
$$

(iii)* Do we also have in general the estimate

$$
|\mu(\sigma, \pi)| \leq 4^{n} \quad \text { for all } n \in \mathbb{N} \text { and all } \sigma, \pi \in N C(n) \text { with } \sigma \leq \pi ?
$$

(iv) Show that we have for all $\pi \in N C(n)$ that

$$
\# \pi+\# K(\pi)=n+1
$$

Exercise 3 (10 points).
In the full Fock space setting of Exercise 3 from assignment 5 consider the operators $l_{1}:=l\left(u_{1}\right)$ and $l_{2}:=l\left(u_{2}\right)$ for two orthogonal unit vectors; according to part (ii) of that exercise l_{1} and l_{2} are $*$-free. Now we consider the two operators

$$
a_{1}:=l_{1}^{*}+\sum_{n=0}^{\infty} \alpha_{n+1} l_{1}^{n} \quad \text { and } \quad a_{2}:=l_{2}^{*}+\sum_{n=0}^{\infty} \beta_{n+1} l_{2}^{n}
$$

for some sequences $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ of complex numbers. (In order to avoid questions what we mean with this infinite sums in general, let us assume that the α_{n} and the β_{n} are such that the sum converges; for example, we could assume that $\left|\alpha_{n}\right|,\left|\beta_{n}\right| \leq r^{n}$ for some $0<r<1$. By the $*$-freeness of l_{1} and l_{2} we know that a_{1} and a_{2} are free. Prove now that $a_{1}+a_{2}$ has the same moments as

$$
a:=l_{1}^{*}+\sum_{n=0}^{\infty}\left(\alpha_{n+1}+\beta_{n+1}\right) l_{1}^{n} .
$$

Exercise 4 (10 points).
Let l be the creation operator from Exercise 3, Assignment 3 (or $l(v)$ from Exercise 3, Assignment 5) in the $*$-probability space $(B(\mathcal{H}), \varphi)$.
(i) Show that the only non-vanishing $*$-cumulants of l (i.e., all cumulants where the arguments are any mixture of l and l^{*}) are the second order cumulants, and for those we have:

$$
\kappa_{2}(l, l)=\kappa_{2}\left(l^{*}, l^{*}\right)=\kappa_{2}\left(l, l^{*}\right)=0, \quad \kappa_{2}\left(l^{*}, l\right)=1 .
$$

(ii) For a sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ of complex numbers we consider as in the previous exercise the operator

$$
a:=l^{*}+\sum_{n=0}^{\infty} \alpha_{n+1} l^{n} .
$$

Show that the free cumulants of a are given by

$$
\kappa_{n}^{a}=\kappa_{n}(a, a, \ldots, a)=\alpha_{n} .
$$

(iii) Combine this with the previous exercise to show that the free cumulants are additive for free variables; i.e., for the a_{1} and a_{2} from the previous exercise we have for all $n \in \mathbb{N}$ that

$$
\kappa_{n}^{a_{1}+a_{2}}=\kappa_{n}^{a_{1}}+\kappa_{n}^{a_{2}} .
$$

[This is of course a consequence of the vanishing of mixed cumulants; however, the present proof avoids the use of the general cumulants functionals and was Voiculescu's original approach to the additivity of the free cumulants.]

