Hardy spaces Assignment 1 Due Thursday, December 19, at the beginning of class

Question 1 (4 points)

- (a) (1 point) Show that if $f, g \in H^2$, then $f \cdot g \in H^1$ with $||f \cdot g||_1 \le ||f||_2 ||g||_2$.
- (b) (3 points) In class, we showed for all $f \in H^1$ and all $z \in \mathbb{D}$ the estimate

$$|f(z)| \le \frac{1}{1 - |z|} ||f||_1.$$

Use part (a) to show that this estimate is sharp up for all $z \in \mathbb{D}$ up to a multiplicative constant. That is, show that there exists c > 0 so that for all $z \in \mathbb{D}$, there exists $f \in H^1$ with

$$|f(z)| \ge \frac{c}{1-|z|} ||f||_1.$$

Question 2 (4 points)

Let $a \in \mathbb{D}$ and let

$$\varphi_a: \overline{\mathbb{D}} \to \mathbb{C}, \quad z \mapsto \frac{a-z}{1-\overline{a}z.}$$

Show that φ_a maps \mathbb{D} bijectively onto \mathbb{D} and \mathbb{T} bijectively onto \mathbb{T} . Moreover, show that $\varphi_a(\varphi_a(z)) = z$ for all $z \in \overline{\mathbb{D}}$.

(*Hint: You may save some calculations by first computing* $1 - |\varphi_a(z)|^2$.)

Question 3 (5 points)

Let $\alpha > 0$ and let

$$f: \mathbb{D} \to \mathbb{C}, \quad z \mapsto \frac{1}{(1-z)^{\alpha}}$$

Show that $f \in H^p$ if and only if $p < \frac{1}{\alpha}$. Thus, conclude that $H^p \subsetneq H^q$ if q < p. (Possible strategy: First show that $f_\alpha \in H^p$ if and only if the function on \mathbb{T} defined by the same formula belongs to $L^p(\mathbb{T})$. Then approximate $|1 - e^{it}|^2$ in a neighborhood of t = 0 by a Taylor polynomial.)

Question 4 (7 points)

Let $1 \leq p < \infty$, let A denote the two dimensional Lebesgue measure and let

$$L^p_a(\mathbb{D}) = \left\{ f \in \mathcal{O}(\mathbb{D}) : \|f\|_{L^p(\mathbb{D})} := \left(\frac{1}{\pi} \int_{\mathbb{D}} |f(z)|^p \, dA(z)\right)^{1/p} < \infty \right\}.$$

- (a) (1 point) Suppose that $1 \leq p \leq q < \infty$. Show that $L^q_a(\mathbb{D}) \subseteq L^p_a(\mathbb{D})$ and that $\|f\|_{L^p(\mathbb{D})} \leq \|f\|_{L^q(\mathbb{D})}$ for all $f \in L^q_a(\mathbb{D})$.
- (b) (3 points) Show that if $f \in L^1_a(\mathbb{D})$ and $z \in \mathbb{D}$, then

$$|f(z)| \le \frac{1}{(1-|z|)^2} ||f||_{L^1(\mathbb{D})}$$

(c) (3 points) Conclude that $L^p_a(\mathbb{D})$ is a closed subspace of $L^p(\mathbb{D})$ and hence a Banach space.