Hardy spaces Assignment 3 Due Thursday, January 16, at the beginning of class

Question 1 (3 points)

Let δ_1 denote the Dirac measure at 1.

- (a) (1 point) Compute the Fourier coefficients of δ_1 .
- (b) (2 points) Compute the Fejér means $\sigma_N[\delta_1]$. What does the theorem about weak-* convergence of the Fejér means say in this case?

Question 2 (5 points)

Let $1 \leq p < \infty$ and let p' be the conjugate exponent of p. Prove the following special case of the duality between $L^p(\mathbb{T})$ and $L^{p'}(\mathbb{T})$, which we used in class: If $g : \mathbb{T} \to \mathbb{C}$ is a measurable function, then

$$||g||_p = \sup \left\{ \int_{\mathbb{T}} |gh| \, dm : h \in L^{p'}(\mathbb{T}), ||h||_{p'} \le 1 \right\}.$$

Question 3 (5 points)

Let $u: \overline{\mathbb{D}} \to \mathbb{C}$ be a continuous function that is harmonic on \mathbb{D} . Show that if there exists $z_0 \in \mathbb{D}$ with

$$|u(z_0)| = \sup_{z \in \overline{\mathbb{D}}} |u(z)|,$$

then u is constant. Deduce that

$$\sup_{z\in\overline{\mathbb{D}}}|u(z)|=\sup_{z\in\mathbb{T}}|u(z)|.$$

Question 4 (7 points)

For $n \in \mathbb{N}$, let

$$L_n : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} c_n (1 - x^2)^n, & \text{if } -1 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $c_n \in \mathbb{R}$ is chosen so that $\int_{-\infty}^{\infty} L_n(x) dx = 1$.

- (a) (2 points) Show that (L_n) is an approximate identity for \mathbb{R} , that is, show that
 - (i) $L_n \geq 0$ for all $n \in \mathbb{N}$,
 - (ii) $\int_{-\infty}^{\infty} L_n(x) \, dx = 1$ for all $n \in \mathbb{N}$,
 - (iii) for all $\delta > 0$, we have $\lim_{n \to \infty} \sup_{x \in \mathbb{R}, |x| \ge \delta} |L_n(x)| = 0$.
- (b) (1 point) Let $f:[0,1] \to \mathbb{C}$ be continuous and let

$$p_n(x) = (f * L_n)(x) = \int_0^1 f(t) L_n(x-t) dt.$$

Show that p_n is a polynomial for all $n \in \mathbb{N}$.

- (c) (3 points) Let $f : [0,1] \to \mathbb{C}$ be continuous with f(0) = f(1) = 0. Show that (p_n) converges to f uniformly on [0,1].
- (d) (1 point) Conclude that the polynomials are dense in the space C[0, 1] of continuous functions with respect to the supremum norm on [0, 1].