Hardy spaces Assignment 4 Due Thursday, January 23, at the beginning of class

Question 1 (5 points)

Let $1 \leq p \leq \infty$. For a harmonic function $u : \mathbb{D} \to \mathbb{C}$, let

$$||u||_p = \sup_{0 \le r < 1} M_p(r, u)$$

and let

 $h^p = \{ u : \mathbb{D} \to \mathbb{C} : u \text{ is harmonic and } \|u\|_p < \infty \},\$

equipped with the norm $\|\cdot\|_p$. Show that the map

$$\Phi: L^p(\mathbb{T}) \to h^p, \quad f \mapsto P[f],$$

is an isometry. Moreover, show that Φ is an isomorphism if $1 and that <math>\Phi$ is not surjective if p = 1.

Question 2 (4 points)

Let $u : \mathbb{D} \to \mathbb{R}$ be harmonic. Show that $\sup_{0 \le r < 1} M_1(r, u) < \infty$ if and only if u is the difference of two non-negative harmonic functions on \mathbb{D} .

Question 3 (5 points)

Let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function with $\operatorname{Re} f(z) \ge 0$ for all $z \in \mathbb{D}$ and f(0) = 1. Prove that there exists a positive probability measure $\mu \in M(\mathbb{T})$ with

$$f(z) = \int_{\mathbb{T}} \frac{w+z}{w-z} \, d\mu(w)$$

for all $z \in \mathbb{D}$.

Question 4 (6 points)

Let $u : \mathbb{D} \to \mathbb{R}$ be harmonic. For $1 \le p \le \infty$ let

$$h^p_{\mathbb{R}} = \{ u : \mathbb{D} \to \mathbb{R}, u \in h^p \},\$$

equipped with $\|\cdot\|_p$ (see Question 1).

- (a) (2 points) Show that there exists a unique harmonic function $v : \mathbb{D} \to \mathbb{R}$ so that u + iv is holomorphic and v(0) = 0. We will write v = H[u].
- (b) (2 points) Show that $H: h_{\mathbb{R}}^2 \to h_{\mathbb{R}}^2$ is linear and bounded. (*Hint: It might be convenient to use Question 1.*)
- (c) (2 points) Show that H does not define a bounded linear map from $h_{\mathbb{R}}^{\infty}$ to $h_{\mathbb{R}}^{\infty}$. (*Hint: Consider* $f(z) = \log(1-z)$.)