Fachrichtung 6.1 – Mathematik Wintersemester 2015/16 Jun.Prof. Johannes Rau

Refresher course for the entrance test in MINT studies Exercise sheet 1

Exercise 1. Set

$$\vec{v} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \vec{w} = \begin{pmatrix} -2\\6\\-1\\1 \end{pmatrix}.$$

- a) Compute the vector $3\vec{v} 2\vec{w} \in \mathbb{R}^4$.
- b) Compute the lengths $\|\vec{v}\|$ and $\|\vec{w}\|$.
- c) Rescale v to length 1 (this means find $\lambda \in \mathbb{R}$ such that $\|\lambda \vec{v}\| = 1$ and compute $\lambda \vec{v}$).

Exercise 2. Set

$$\vec{x} = \begin{pmatrix} 3\\4 \end{pmatrix}, \vec{y} = \begin{pmatrix} 1\\1 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \vec{w} = \begin{pmatrix} 3\\2\\1 \end{pmatrix}.$$

- a) Compute the lengths $\|\vec{x}\|$, $\|\vec{y}\|$, $\|\vec{v}\|$, and $\|\vec{w}\|$.
- b) Compute the scalar products $\vec{x} \cdot \vec{y}$ and $\vec{v} \cdot \vec{w}$.
- c) Compute the angle between \vec{x} and \vec{y} and the angle between \vec{v} and \vec{w} .

Exercise 3. For any $a \in \mathbb{R}$ consider the vectors

$$\vec{x} = \begin{pmatrix} 4\\ a\\ 2a+1 \end{pmatrix}, \vec{y} = \begin{pmatrix} 3a\\ -8\\ -2 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1\\ 7\\ a+2\\ -2 \end{pmatrix}, \vec{w} = \begin{pmatrix} 3\\ a\\ -3\\ a \end{pmatrix}.$$

- a) For which values of a are \vec{x} and \vec{y} orthogonal?
- b) For which values of a are \vec{v} and \vec{w} orthogonal?

Exercise 4. Set

$$\vec{v} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \vec{w} = \begin{pmatrix} 0\\2\\3 \end{pmatrix}.$$

- a) Compute the cross products $\vec{v} \times \vec{w}$ as well as $\vec{w} \times \vec{v}$. Compare!
- b) Set $\vec{z} = \vec{v} \times \vec{w}$. Show explicitly that $\vec{z} \perp \vec{x}$ as well as $\vec{z} \perp \vec{y}$.