Refresher course for the entrance test in MINT studies Exercise sheet 1

Exercise 1. Set

$$
\vec{v}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right), \vec{w}=\left(\begin{array}{c}
-2 \\
6 \\
-1 \\
1
\end{array}\right) .
$$

a) Compute the vector $3 \vec{v}-2 \vec{w} \in \mathbb{R}^{4}$.
b) Compute the lengths $\|\vec{v}\|$ and $\|\vec{w}\|$.
c) Rescale v to length 1 (this means find $\lambda \in \mathbb{R}$ such that $\|\lambda \vec{v}\|=1$ and compute $\lambda \vec{v}$).

Exercise 2. Set

$$
\vec{x}=\binom{3}{4}, \vec{y}=\binom{1}{1}, \vec{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \vec{w}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) .
$$

a) Compute the lengths $\|\vec{x}\|,\|\vec{y}\|,\|\vec{v}\|$, and $\|\vec{w}\|$.
b) Compute the scalar products $\vec{x} \cdot \vec{y}$ and $\vec{v} \cdot \vec{w}$.
c) Compute the angle between \vec{x} and \vec{y} and the angle between \vec{v} and \vec{w}.

Exercise 3. For any $a \in \mathbb{R}$ consider the vectors

$$
\vec{x}=\left(\begin{array}{c}
4 \\
a \\
2 a+1
\end{array}\right), \vec{y}=\left(\begin{array}{c}
3 a \\
-8 \\
-2
\end{array}\right), \vec{v}=\left(\begin{array}{c}
1 \\
7 \\
a+2 \\
-2
\end{array}\right), \vec{w}=\left(\begin{array}{c}
3 \\
a \\
-3 \\
a
\end{array}\right) .
$$

a) For which values of a are \vec{x} and \vec{y} orthogonal?
b) For which values of a are \vec{v} and \vec{w} orthogonal?

Exercise 4. Set

$$
\vec{v}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \vec{w}=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right) .
$$

a) Compute the cross products $\vec{v} \times \vec{w}$ as well as $\vec{w} \times \vec{v}$. Compare!
b) Set $\vec{z}=\vec{v} \times \vec{w}$. Show explicitly that $\vec{z} \perp \vec{x}$ as well as $\vec{z} \perp \vec{y}$.

