Refresher course for the entrance test in MINT studies Exercise sheet 2

Exercise 1. Solve the following systems of equations. (Use matrix notation and the Gauß algorithm. How many solutions are there?)

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=3 \\
x_{1}+2 x_{2}+3 x_{3}=6
\end{array}
$$

$$
\begin{aligned}
x_{2}-2 x_{3} & =6 \\
2 x_{1}+6 x_{2}+4 x_{3} & =8 \\
x_{1}+4 x_{2} & =10
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =4 \\
x_{1}-x_{2}-x_{3}+x_{4} & =0 \\
3 x_{1}-x_{2}-x_{3}+3 x_{4} & =2
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{3} & =0 \\
2 x_{1}+x_{2}+2 x_{4} & =0 \\
x_{2}-x_{4} & =4 \\
x_{1}-x_{2}-x_{3}+x_{4} & =-2 \\
3 x_{1}+x_{2}+x_{3}+2 x_{4} & =0
\end{aligned}
$$

$$
\begin{aligned}
3\left(2 x_{1}-x_{2}\right)+4\left(x_{1}-2 x_{2}\right) & =87 \\
2\left(3 x_{1}-x_{2}\right)-3\left(x_{1}-x_{2}\right) & =82
\end{aligned}
$$

Exercise 2. Here is a system of equations in two variables x_{1}, x_{2} with one parameter $a \in \mathbb{R}$. Solve the system (this means describe the solutions as functions of a). How does the number of solutions depend on a ?

$$
\begin{array}{r}
x_{1}+x_{2}=a \\
a x_{1}-x_{2}=1
\end{array}
$$

Exercise 3. For fun!
When I was born, my father was 36 years old. In 3 years, I will have half the age of my father. How old am I? (This is a system of linear equations!)

