UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Dr. Moritz Weber

Dipl.-Math. Michael Wernet

Übungen zur Vorlesung Mathematik für Studierende der Biologie und des Lehramtes Chemie

Wintersemester 2012/2013

Blatt 6

Abgabetermin: Freitag, 30.11.2012

Aufgabe 1

$$(1+1+1+2+1+1+1+2=10 \text{ Punkte})$$

Seien $z_1=2+i, z_2=1-i, z_3=1+i, z_4=4+3i$ komplexe Zahlen. Berechnen Sie

(a)
$$x_1 = z_1 + z_2 - z_3$$
,

$$(b) \quad x_2 = z_1 \cdot z_4,$$

(c)
$$x_3 = \frac{z_2}{z_3}$$
,

(d)
$$x_4 = \operatorname{Re}(i^n)$$
, wobei $n \in \mathbb{Z}$,

$$(e) \quad x_5 = \operatorname{Im}(z_1 \cdot z_2),$$

$$(f)$$
 $x_6 = \overline{(z_1 + z_4)},$

(g)
$$x_7 = |i^n|$$
, wobei $n \in \mathbb{Z}$,

(h)
$$x_8 = |z_2 \cdot z_4|$$
.

(Hinweis: zu (d) und (g): Beachten Sie $z^{-n} = \frac{1}{z^n}$ für alle $z \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$.)

Aufgabe 2

(3+7=10 Punkte)

(a) Beweisen Sie die folgenden Aussagen für alle $z \in \mathbb{C}$:

(i)
$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}),$$

$$(ii) \quad |z|^2 = z \cdot \overline{z},$$

(i)
$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}),$$

(ii) $|z|^2 = z \cdot \overline{z},$
(iii) $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ (falls $z \neq 0$).

(Hinweis: Schreiben Sie dazu $z = a + bi \text{ mit } a, b \in \mathbb{R}.$)

(b) Seien $u,v,w,z\in\mathbb{C}$ geegeben. Berechnen Sie die fehlenden Größen und ergänzen Sie die folgende Tabelle:

	Argument	Betrag	Realteil	Imaginärteil
u	$\frac{7\pi}{6}$	$\sqrt{12}$		
v	$\frac{\pi}{2}$	$\frac{1}{3}$		
w			2	2
z			$-\sqrt{3}$	1
uv				
$\frac{u}{v}$				
w^4				

(bitte wenden)

(a) Wir suchen die Lösungen für w für die Gleichung $w^2 = y$, wobei $y \in \mathbb{C}$ durch

$$y = |y|(\cos(\varphi) + i\sin(\varphi))$$

gegeben ist. Begründen Sie, warum

$$w_1 = \sqrt{|y|} \left(\cos \left(\frac{\varphi}{2} \right) + i \sin \left(\frac{\varphi}{2} \right) \right) \text{ und } w_2 = -w_1$$

die beiden Lösungen der Gleichung sind. Begründen Sie auch, warum man w_2 als

$$w_2 = \sqrt{|y|} \left(\cos \left(\pi + \frac{\varphi}{2} \right) + i \sin \left(\pi + \frac{\varphi}{2} \right) \right)$$

schreiben kann.

- (b) Lösen Sie die folgenden quadratischen Gleichungen über C. Gehen Sie dabei wie folgt vor:
 - 1.) Finden Sie eine quadratische Ergänzung, um die Gleichung in die Form $w^2=y$ zu bringen. Schreiben Sie $y\in\mathbb{C}$ dabei in Polardarstellung.
 - 2.) Schließen Sie von den Lösungen von $w^2=y$ auf die Lösungen für z.
 - 3.) Schreiben Sie die Lösungen für z in der Form a+bi mit $a,b\in\mathbb{R}.$

$$(i) z^2 = -3i,$$

(ii)
$$z^2 - 4z + 29 = 0$$
.

(iii)
$$z^2 - z\left(2i + 2\sqrt{2}\right) + 1 + i\left(16 + 2\sqrt{2}\right) = 0.$$

Aufgabe 4

(2+3+5=10 Punkte)

Bestimmen Sie zu folgenden Matrizen alle Eigenwerte in \mathbb{C} und jeweils die Menge aller zugehörigen Eigenvektoren in \mathbb{C}^2 bzw. \mathbb{C}^3 :

$$A = \begin{pmatrix} 0 & -1 \\ 9 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 \\ -4 & 5 \end{pmatrix}, C = \begin{pmatrix} 4 & -4 & 3 \\ 5 & -3 & 5 \\ 1 & 0 & 2 \end{pmatrix}.$$