UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Prof. Dr. Roland Speicher

Dr. Tobias Mai

Übungen zur Vorlesung Mathematik für Naturwissenschaftler I

Wintersemester 2019/2020

Blatt 8

Abgabe: Dienstag, 17. Dezember 2019, 10:15 Uhr in die Briefkästen im Untergeschoss von Gebäude E2.5

Aufgabe 1 (5 + 5 Punkte). Für ein beliebiges $a \in \mathbb{R}$ betrachten wir die Funktion

$$f_a: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \begin{cases} ax^2 - 1, & \text{für } x < 2\\ 5 - 2x, & \text{für } x \ge 2 \end{cases}.$$

- (a) Zeichnen Sie den Graphen von f_a in den beiden Fällen $a = \frac{1}{4}$ und a = 1.
- (b) Gibt es ein $a \in \mathbb{R}$, für das die Funktion f_a auf ganz \mathbb{R} stetig ist?

Aufgabe 2 (5 + 5 Punkte + 5* Zusatzpunkte). (a) Es seien $I \neq \emptyset$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion auf I. Wir nehmen an, dass es eine Konstante L > 0 gibt, sodass die Bedingung

$$|f(x) - f(y)| \le L|x - y|$$
 für alle $x, y \in I$ (1)

erfüllt ist. Zeigen Sie, dass f auf I stetig ist.

Bemerkung: Ist $f: I \to \mathbb{R}$ eine Funktion, die die Bedingung (1) erfüllt, dann sagen wir "f ist Lipschitz-stetig" und nennen L eine Lipschitz-Konstante von f.

(b) Weisen Sie mithilfe von Aufgabenteil (a) die Stetigkeit der Wurzelfunktion

$$f: [0, \infty) \longrightarrow \mathbb{R}, \quad x \longmapsto \sqrt{x}$$

auf dem offenen Intervall $(0, \infty)$ nach. Zeigen Sie dazu, dass die Einschränkung von f auf jedes Intervall der Form (ε, ∞) mit beliebigem $\varepsilon > 0$ die Bedingung

$$|f(x) - f(y)| \le \frac{1}{2\sqrt{\varepsilon}}|x - y|$$
 für alle $x, y \in (\varepsilon, \infty)$

erfüllt, d.h. gilt (1) mit $I=(\varepsilon,\infty)$ und $L=\frac{1}{2\sqrt{\varepsilon}}.$

Tipp: Für $x, y \ge 0$ gilt $(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = x - y$.

(c)* Ist f auch bei x = 0 stetig? Begründen Sie Ihre Antwort.

bitte wenden

Aufgabe 3 (5 + 5 Punkte). (a) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion mit der Eigenschaft f(0) = 1. Ferner sei $(a_n)_{n \in \mathbb{N}}$ eine Folge reeller Zahlen, die gegen 2 konvergiert. Begründen Sie, dass

$$\lim_{n \to \infty} \frac{a_n}{4 + a_n^2} f\left(\frac{a_n^2 - 5a_n + 6}{1 + 2a_n^2}\right) = \frac{1}{4}.$$

(b) Berechnen Sie den Grenzwert

$$\lim_{n\to\infty} n\left(\sqrt{1+n^2}-n\right).$$

Tipp: Nutzen Sie erneut aus, dass $(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = x - y$ für beliebige $x, y \ge 0$ gilt, und verwenden Sie anschließend das Resultat aus Aufgabe 2 (b).

Aufgabe 4 (2 + 8 Punkte). (a) Stellen Sie die beiden Funktionen

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto 4 - x^2$$

 $g: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto e^x$

$$g: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto e^x$$

in einem gemeinsamen Koordinatensystem über dem Intervall [-2,3] dar.

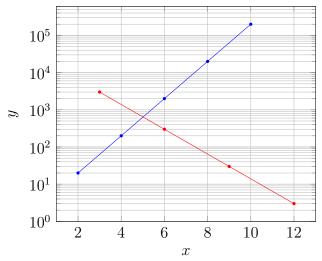
(b) Zeigen Sie mithilfe des Zwischenwertsatzes (Satz 8.6 der Vorlesung), dass die Gleichung

$$4 - x^2 = e^x$$

über der Grundmenge R der reellen Zahlen mindestens zwei verschiedene Lösungen besitzt.

Zusatzaufgabe* (10* Zusatzpunkte). Um Funktionen $f: \mathbb{R} \to \mathbb{R}^+$, die Werte sehr unterschiedlicher Größenordnungen in $\mathbb{R}^+ := \{x \in \mathbb{R} \mid x > 0\}$ annehmen, graphisch darzustellen, bietet sich die Verwendung eines halblogarithmisches Diagramms an; in einem solchen Koordinatensystem ist die y-Achse logarithmisch skaliert, während die x-Achse unskaliert bleibt.

Nachfolgend sind in einem solchen halblogarithmischen Diagramm die Wertepaare von zwei Funktionen $f_1: \mathbb{R} \to \mathbb{R}^+$ (blau) und $f_2: \mathbb{R} \to \mathbb{R}^+$ (rot) eingetragen.



Bestimmen Sie passende Funktionsgleichungen für f_1 und f_2 .