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A brief reminder on the theory of unbounded linear operators
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Let (H1, 〈·, ·〉) and (H2, 〈·, ·〉2) be complex Hilbert spaces; the norms induced by the inner
product are denoted by ‖ · ‖1 and ‖ · ‖2, respectively.

1. The notion of unbounded linear operators

By an unbounded (linear) operator from H1 to H2, we mean a linear map

T : H1 ⊇ domT → H2

that is de�ned on a linear subspace domT of H1, called the domain of T . We say that T

is densely de�ned if domT is dense in H1, i.e., if domT
‖·‖1

= H1

The graph of T , which we will denote by G(T ), is de�ned as

G(T ) := {(x, Tx) ∈ H1 ×H2 | x ∈ domT}.

It is thus linear subspace of the Hilbert space H1 ⊕H2 with the inner product given by

〈(x1, y1), (x2, y2)〉 := 〈x1, x2〉1 + 〈y1, y2〉2 for (x1, y1), (x2, y2) ∈ H1 ⊕H2.

Lemma 1. A linear subspace G ⊆ H1 ⊕H2 is the graph of an unbounded linear operator
(i.e., there is an unbounded linear operator T : H1 ⊇ domT → H2 such that G = G(T ))
if and only if G ∩ ({0} ×H2) = {(0, 0)}.

2. Closed and closable operators

Let T : H1 ⊇ domT → H2 be an unbounded operator from H1 to H2.
An unbounded operator S : H1 ⊇ domS → H2 is called an extension of T , written as
S ⊆ T , if G(T ) ⊆ G(S) holds, i.e., if domT ⊆ domS and Sx = Tx for every x ∈ domT .
We say that the unbounded operator T is

• closed, if G(T ) is closed in H1 ⊕H2; explicitly, this means that for every sequence
(xn)

∞
n=1 in domT which converges in H1 to a point x ∈ H1 and for which (Txn)

∞
n=1

is convergent in H2 to a point y ∈ H2, it holds true that x ∈ domT and y = Tx.



• closable, if T admits an extension S that is closed.

Theorem 1. For an unbounded operator T : H1 ⊇ domT → H2, the following statements
are equivalent:

(i) T is closable;

(ii) for every sequence (xn)
∞
n=1 in domT which converges to 0 in H1 and for which

(Txn)
∞
n=1 converges in H2 to a point y ∈ H2, we necessarily have that y = 0;

(iii) G(T ) ∩ ({0} ×H2) = {(0, 0)}.

It is worthwhile to take a closer look on the proof that (iii) implies (i). It follows from
Lemma 1 that if (iii) holds, then G(T ) must be the graph of an unbounded linear operator,
say T : H1 ⊇ domT → H2. The operator T is thus a closed extension of T ; in fact, it
is the (unique) minimal closed extension (i.e., for every other closed operator S that
satis�es T ⊆ S, it follows that T ⊆ S), called the closure of T . Furthermore, its domain
domT is the closure of domT with respect to the graph norm ‖ · ‖T which is de�ned by
‖x‖2T := ‖x‖21 + ‖Tx‖22 for each x ∈ domT .

3. The adjoint operator

Let now T : H1 ⊇ domT → H2 be a densely de�ned unbounded linear operator. For
every y ∈ H2, we introduce a linear functional ϕy : domT → C, x 7→ 〈Tx, y〉2. Using this
notation, we may de�ne

domT ∗ := {y ∈ H2 | ϕy is continuous on domT with respect to ‖ · ‖1},

which is clearly a subspace of H2. Since domT is dense in H1, ϕy for every y ∈ domT ∗

extends uniquely to a bounded linear functional ϕ̂y on H1; by the Riesz representation
theorem, the latter must be of the form ϕ̂y(x) = 〈x, T ∗y〉1 for all x ∈ H1 with a unique
vector T ∗y ∈ H1. The assignment y 7→ T ∗y is in fact linear on domT ∗, so that this
construction results in an unbounded linear operator

T ∗ : H2 ⊇ domT ∗ → H1,

called the adjoint of T .

Theorem 2. Let T : H1 ⊇ domT → H2 be a densely de�ned unbounded linear operator.

(i) The adjoint operator T ∗ is always closed.

(ii) If T is closed, then T ∗ is densely de�ned and the operator T ∗∗ := (T ∗)∗ satis�es
T ∗∗ = T .

(iii) The operator T is closable if and only if its adjoint T ∗ is densely de�ned; in this
case, we have that T ∗∗ = T .



4. Symmetric and selfadjoint operators

Throughout the following, let (H, 〈·, ·〉) be a complex Hilbert space. A densely de�ned
operator T : H ⊇ domT → H is called

• symmetric, if T ⊆ T ∗, or in other words, if 〈Tx1, x2〉 = 〈x1, Tx2〉 for all x1, x2 ∈ H.

• selfadjoint, if T = T ∗.

• maximally symmetric, if T is symmetric and if the following holds: whenever S is a
symmetric extension of T , it follows that S = T .

• essentially selfadjoint, if T is symmetric with selfadjoint closure T .

Lemma 2.

(i) Every symmetric operator is closable.

(ii) Every selfadjont operator is maximally symmetric.

(iii) A densely de�ned operator T : H ⊇ domT → H is essentially selfadjoint if and only
if T = T ∗.

Suppose that T is densely de�ned and symmetric. The defect indices n±(T ) ∈ [0,∞] of T
are de�ned by

n+(T ) := dim(T + i)⊥ = dimker(T ∗− i) and n−(T ) := dim(T − i)⊥ = dimker(T ∗+ i).

Theorem 3. Let T : H ⊇ domT → H be densely de�ned and symmetric. Then the
following statements are equivalent:

(i) T is essentially selfadjoint;

(ii) n+(T ) = n−(T ) = 0;

(iii) ran(T + i) and ran(T − i) are dense.

Suppose in addition that T is closed. Then the following statements are equivalent:

(i) T is selfadjoint;

(ii) n+(T ) = n−(T ) = 0;

(iii) ran(T + i) = ran(T − i) = H.

For closed operators, we actually have the following.

Theorem 4. Let T : H ⊇ domT → H be densely de�ned, closed, and symmetric. Then
we have the following:

(i) T is selfadjoint if and only if n+(T ) = n−(T ) = 0.

(ii) T is maximally symmetric if and only if n+(T ) = 0 or n−(T ) = 0.

(iii) T has a selfadjoint extension if and only if n+(T ) = n−(T ).



5. Resolvent set and spectrum

For any densely de�ned unbounded linear operator T : H ⊇ domT → H, we de�ne its
resolvent set ρ(T ) by

ρ(T ) :=
{
λ ∈ C

∣∣ (T − λ1) : domT → H is bijective and (T − λ1)−1 ∈ B(H)
}

and its spectrum σ(T ) by σ(T ) := C \ ρ(T ).

Lemma 3. Suppose that T : H ⊇ domT → H is densely de�ned and closed.

(i) If (T − λ1) : domT → H is bijective for a λ ∈ C, then its inverse (T − λ1)−1 is
bounded.

(ii) The spectrum σ(T ) ⊆ C is closed.

(iii) If T is selfadjoint, then σ(T ) ⊆ R.

(iv) If T is symmetric and satis�es σ(T ) ⊆ R, then T is selfadjoint.

6. The spectral theorem and functional calculus

Theorem 5. Let T : H ⊇ domT → H be selfadjoint. Then there is a unique spectral
measure E such that

〈Tx, y〉 =
∫
R
λ d〈E(λ)x, y〉 for all x ∈ domT , y ∈ H.

If h : R→ R is measurable, then

〈h(T )x, y〉 =
∫
R
h(λ) d〈E(λ)x, y〉

de�nes a selfadjoint operator h(T ) : H ⊇ domh(T )→ H with domain

domh(T ) :=
{
x ∈ H

∣∣∣ ∫
R
|h(λ)|2 d〈E(λ)x, x〉 <∞

}
.


