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A brief reminder on the theory of unbounded linear operators

Let (H1, (-,-)) and (Ha, (-, -)2) be complex Hilbert spaces; the norms induced by the inner
product are denoted by || - ||y and || - ||2, respectively.

1. The notion of unbounded linear operators

By an unbounded (linear) operator from H; to Hy, we mean a linear map
T: Hi DdomT — H,

that is defined on a linear subspace domT" of H;, called the domain of T. We say that T
is densely defined if dom T is dense in Hg, i.e., if dom il Hy
The graph of T, which we will denote by G(T), is defined as

G(T):={(z,Tx) € H1 X Ha | v € dom T}
It is thus linear subspace of the Hilbert space H; ® Ho with the inner product given by

<($1ay1)7 (m2,y2)) = (3617962>1 + <y1,y2)2 for (131791); (552,3/2) € Hi1 @ Ho.

Lemma 1. A linear subspace G C Hy @ Hs is the graph of an unbounded linear operator
(i-e., there is an unbounded linear operator T : Hy O domT — Hs such that G = G(T))
if and only if GN ({0} x Ha) = {(0,0)}.

2. Closed and closable operators

Let T': Hq O domT — Hsy be an unbounded operator from H; to Hs.

An unbounded operator S : H; O dom S — H, is called an extension of T, written as
SCT,if G(T) C G(S) holds, i.e., if domT C dom S and Sz = Tz for every x € domT.
We say that the unbounded operator T is

o closed, if G(T) is closed in H; @ Ha; explicitly, this means that for every sequence
(2,)22; in dom T which converges in H; to a point « € H; and for which (T'z,)>
is convergent in Hs to a point y € Ho, it holds true that x € domT and y = T'x.



e closable, if T' admits an extension S that is closed.

Theorem 1. For an unbounded operator T : Hy O domT' — Ho, the following statements
are equivalent:

(i) T is closable;

(i1) for every sequence (x,)0%, in domT which converges to 0 in Hy and for which
(Tx,)e, converges in Ha to a point y € Ho, we necessarily have that y = 0;

(iii) G(T) 0 ({0} x Ha) = {(0,0)}.

It is worthwhile to take a closer look on the proof that (iii) implies (i). It follows from
Lemma 1 that if (iii) holds, then G(T') must be the graph of an unbounded linear operator,
say T : H1 O domT — H,. The operator T is thus a closed extension of 77 in fact, it
is the (unique) minimal closed extension (i.e., for every other closed operator S that
satisfies T C S, it follows that T C S), called the closure of T. Furthermore, its domain
dom T is the closure of dom T with respect to the graph norm || - ||z which is defined by

|z||% := ||z||? + || T=||3 for each z € dom T

3. The adjoint operator

Let now T : H; O domT — Hsy be a densely defined unbounded linear operator. For
every y € H, we introduce a linear functional ¢, : domT — C,z — (T'z, y),. Using this
notation, we may define

domT™ := {y € Hz | ¢, is continuous on dom T with respect to || - ||1},

which is clearly a subspace of H,. Since dom T is dense in H;, ¢, for every y € dom T™
extends uniquely to a bounded linear functional @, on H;; by the Riesz representation
theorem, the latter must be of the form p,(x) = (x,T*y); for all € H; with a unique
vector T*y € H;. The assignment y — Ty is in fact linear on dom 7™, so that this
construction results in an unbounded linear operator

T : Hy O domT™ — Hy,
called the adjoint of T
Theorem 2. Let T : Hy O domT — Hy be a densely defined unbounded linear operator.

(i) The adjoint operator T* is always closed.

(11) If T is closed, then T* is densely defined and the operator T** := (T*)* satisfies
T =T,

(11i) The operator T is closable if and only if its adjoint T is densely defined; in this
case, we have that T** =T.



4. Symmetric and selfadjoint operators

Throughout the following, let (#,(,-)) be a complex Hilbert space. A densely defined
operator T': H O domT — H is called

o symmetric, if T'C T, or in other words, if (Txy, z5) = (x1, Tzy) for all x1, 25 € H.
e selfadjoint, if T'=T".

o mazimally symmetric, if T is symmetric and if the following holds: whenever S is a
symmetric extension of 7', it follows that S = T.

e essentially selfadjoint, if T is symmetric with selfadjoint closure 7.
Lemma 2.
(i) Every symmetric operator is closable.
(ii) Every selfadjont operator is mazimally symmetric.

(11i) A densely defined operator T : H O domT — H is essentially selfadjoint if and only
if T =T+,

Suppose that 7" is densely defined and symmetric. The defect indices ni(T) € [0, 00] of T
are defined by

ny(T) := dim(T +14)* = dimker(T* —i) and n_(T) := dim(T —i)* = dim ker(T™* +1).

Theorem 3. Let T' : H O domT — H be densely defined and symmetric. Then the
following statements are equivalent:

(i) T is essentially selfadjoint;
(ii)) n (T)=n_(T) =0;
(111) ran(T + i) and ran(T — i) are dense.
Suppose in addition that T 1s closed. Then the following statements are equivalent:
(1) T is selfadjoint;
fii) ny(T) = n_(T) = 0;
(11i) ran(T + i) = ran(T — i) = H.
For closed operators, we actually have the following.

Theorem 4. Let T : H O domT — H be densely defined, closed, and symmetric. Then
we have the following:

(i) T is selfadjoint if and only if n (T) =n_(T) = 0.
(ii) T is mazimally symmetric if and only if n.(T) =0 or n_(T) = 0.

(111) T has a selfadjoint extension if and only if ny (T) =n_(T).



5. Resolvent set and spectrum

For any densely defined unbounded linear operator 1" : H 2 domT — H, we define its
resolvent set p(T) by

p(T):={Ae€C | (T —Al) :domT — H is bijective and (T — A\1)~" € B(H)}
and its spectrum o(T) by o(T) := C\ p(T).
Lemma 3. Suppose that T : H O domT — H is densely defined and closed.

(i) If (T — A1) : domT — H is bijective for a X\ € C, then its inverse (T — \1)7! is
bounded.

(1i) The spectrum o(T) C C is closed.
(111) If T is selfadjoint, then o(T) C R.

(iwv) If T is symmetric and satisfies o(T) C R, then T is selfadjoint.

6. The spectral theorem and functional calculus

Theorem 5. Let T : H O domT — H be selfadjoint. Then there is a unique spectral
measure F such that

(Tr,y) = / Ad(E(N)z,y) for all x € domT, y € H.
R

If h : R — R is measurable, then

((T)2.9) = [ B AEW.3)

R

defines a selfadjoint operator h(T) : H O dom h(T) — H with domain

dom h(T) = {x cH ‘ /R|h(/\)|2d<E(/\)x,x) < oo}.



