## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Tobias Mai



## Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

## Assignment 1B

for the tutorial on Tuesday, April 23, 10:15 am (in Seminar Room 10)

**Exercise 1.** Let  $(\mathcal{A}, \mathcal{H}, \mathcal{D})$  be a spectral triple and let  $V \in B(\mathcal{H})$  be any selfadjoint operator. Prove that  $(\mathcal{A}, \mathcal{H}, \mathcal{D}_V)$  for the unbounded operator  $\mathcal{D}_V$  given by  $\mathcal{D}_V := \mathcal{D} + V$  with domain  $\text{dom}(\mathcal{D}_V) := \text{dom}(\mathcal{D})$  is again a spectral triple.

## Exercise 2.

- (i) Let  $x_0 \in \mathbb{R}^n$  be given. For  $j = 1, \ldots, n$ , we define a linear map  $\partial_j|_{x_0} : C_{x_0}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$  by  $\partial_j|_{x_0}([f]_{x_0}) := (\partial_j f)(x_0) = \frac{\partial f}{\partial x_j}(x_0)$  for every germ  $[f]_{x_0} \in C_{x_0}^{\infty}(\mathbb{R}^n)$ . Prove that  $\{\partial_j|_{x_0} \mid j = 1, \ldots, n\}$  forms a basis of the tangent space  $T_{x_0}\mathbb{R}^n$ .
- (ii) Let  $\mathcal{M}$  be a *n*-dimensional smooth manifold with the maximal smooth atlas  $\mathcal{A} = \{(U_i, \varphi_i) \mid i \in I\}$ . Show that for every  $i \in I$  and each  $x_0 \in U_i$ , the linear map

$$\Theta_{i,x_0}: \mathbb{R}^n \to T_{x_0}\mathcal{M}$$

that is defined by

$$\Theta_{i,x_0}(v)\big([f]_{x_0}\big) := \sum_{j=1}^n v_j\big(\partial_j(f \circ \varphi_i^{-1})\big)(\varphi_i(x_0))$$

for each  $v = (v_1, \dots, v_n) \in \mathbb{R}^n$  and every germ  $[f]_{x_0} \in C^{\infty}_{x_0}(\mathcal{M})$ , is an isomorphism of real vector spaces.