UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Tobias Mai

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 2B

for the tutorial on Tuesday, May 7, 10:15 am (in Seminar Room 10)

Exercise 1. Complete the proof of Theorem 2.9 of the lecture by proving the following assertions for a smooth manifold \mathcal{M} of dimension n and an open subset $V \subseteq \mathcal{M}$:

(i) For every $D \in \text{der } C^{\infty}(V)$, the map $\Psi(D) : V \to T\mathcal{M}, x \mapsto (\Psi(D))(x)$ belongs to $\mathfrak{X}(V)$. Recall that $(\Psi(D))(x_0) \in T_{x_0}\mathcal{M}$ for any point $x_0 \in V$ is defined by

$$(\Psi(D))(x_0): C_{x_0}^{\infty}(\mathcal{M}) \to \mathbb{R}, \quad [f]_{x_0} \mapsto D|_{x_0}(\rho \cdot f|_V),$$

where $\rho: \mathcal{M} \to [0,1]$, for a chosen representative (U,f) of the given germ $[f]_{x_0}$, is a bump function for (U,x_0) .

(ii) The induced linear map $\Psi: \operatorname{der} C^\infty(V) \to \mathfrak{X}(V), D \mapsto \Psi(D)$ satisfies

$$\Phi \circ \Psi = \mathrm{id}_{\mathrm{der}\, C^\infty(V)} \qquad \text{and} \qquad \Psi \circ \Phi = \mathrm{id}_{\mathfrak{X}(V)},$$

where $\Phi: \mathfrak{X}(V) \to \operatorname{der} C^{\infty}(V)$ is the linear map defined in Theorem 2.9.