UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Tobias Mai

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 3A

for the tutorial on Tuesday, May 21, 10:15 am (in Seminar Room 10)

Exercise 1. Let \mathcal{M} be a paracompact smooth manifold of dimension n and let g be a Riemannian metric on \mathcal{M} . Show that for every $f \in C_c^{\infty}(\mathcal{M})$ with the property that $\operatorname{supp}(f) \subset U$ for some local chart (U, φ) in the maximal smooth atlas \mathcal{A} of \mathcal{M} , the value $\int_{\mathcal{M}} f$ that is assigned to f by formula (2.1) of the lecture, does not depend on the particular choice of (U, φ) .

Exercise 2. Let \mathcal{M} be an oriented compact smooth manifold of dimension n and let g be a Riemannian metric on \mathcal{M} . Prove the identity

$$\langle d\overline{f} \wedge \eta, \omega \rangle_{\Omega_{\mathbb{C}}^{\bullet}(\mathcal{M})} = \langle \eta, df \sqcup \omega \rangle_{\Omega_{\mathbb{C}}^{\bullet}(\mathcal{M})}$$

for all $f \in C^{\infty}(\mathcal{M}, \mathbb{C})$ and all $\omega, \eta \in \Omega^{\bullet}_{\mathbb{C}}(\mathcal{M})$.