

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 3B

for the tutorial on Tuesday, May 21, 10:15 am (in Seminar Room 10)

Exercise 1. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional real Hilbert space and let $(V_{\mathbb{C}}, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ its complexification. On the finite dimensional complex Hilbert space $\mathcal{F}_{-}(V_{\mathbb{C}}) := \bigoplus_{p \ge 0} \bigwedge_{\mathbb{C}}^{p} V_{\mathbb{C}}$, called the *antisymmetric Fock space*, we introduce for each $v \in V_{\mathbb{C}}$ the linear operators

$$a(v): \mathcal{F}_{-}(V_{\mathbb{C}}) \to \mathcal{F}_{-}(V_{\mathbb{C}}), \quad w \mapsto \overline{v} \sqcup w$$

and

$$a^*(v): \mathcal{F}_-(V_{\mathbb{C}}) \to \mathcal{F}_-(V_{\mathbb{C}}), \quad w \mapsto v \land w.$$

Prove the following assertions:

- (i) For each $v \in V_{\mathbb{C}}$, we have that $a(v)^* = a^*(v)$.
- (ii) For $v_1, v_2 \in V_{\mathbb{C}}$, we have that

$$a(v_2)a^*(v_1) + a^*(v_1)a(v_2) = \langle v_1, v_2 \rangle_{\mathbb{C}} \operatorname{id}_{\mathcal{F}_{-}(V_{\mathbb{C}})}$$

(iii) For each $v \in V_{\mathbb{C}}$, the operator

$$x(v) := i(a^*(v) - a(\overline{v}))$$

satisfies $x(v)^* = x(\overline{v})$. If $v \in V_{\mathbb{C}}$ is real (i.e., if $\overline{v} = v$ holds), the operator x(v) is selfadjoint and has the norm ||x(v)|| = ||v||. How does x(v) for $v \in V_{\mathbb{C}}$ relate to the Clifford multiplication from the left with v?

Hint: For the statement about the operator norm, compute $x(v)^2$ for real $v \in V_{\mathbb{C}}$.