Assignments for the lecture
Introduction to Noncommutative Differential Geometry
Summer term 2019

Assignment 3B

for the tutorial on Tuesday, May 21, 10:15 am (in Seminar Room 10)

Exercise 1. Let $(V,\langle\cdot, \cdot\rangle)$ be a finite dimensional real Hilbert space and let $\left(V_{\mathbb{C}},\langle\cdot, \cdot\rangle_{\mathbb{C}}\right)$ its complexification. On the finite dimensional complex Hilbert space $\mathcal{F}_{-}\left(V_{\mathbb{C}}\right):=\bigoplus_{p \geq 0} \Lambda_{\mathbb{C}}^{p} V_{\mathbb{C}}$, called the antisymmetric Fock space, we introduce for each $v \in V_{\mathbb{C}}$ the linear operators

$$
a(v): \mathcal{F}_{-}\left(V_{\mathbb{C}}\right) \rightarrow \mathcal{F}_{-}\left(V_{\mathbb{C}}\right), \quad w \mapsto \bar{v}\llcorner w
$$

and

$$
a^{*}(v): \mathcal{F}_{-}\left(V_{\mathbb{C}}\right) \rightarrow \mathcal{F}_{-}\left(V_{\mathbb{C}}\right), \quad w \mapsto v \wedge w .
$$

Prove the following assertions:
(i) For each $v \in V_{\mathbb{C}}$, we have that $a(v)^{*}=a^{*}(v)$.
(ii) For $v_{1}, v_{2} \in V_{\mathbb{C}}$, we have that

$$
a\left(v_{2}\right) a^{*}\left(v_{1}\right)+a^{*}\left(v_{1}\right) a\left(v_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle_{\mathbb{C}} \operatorname{id}_{\mathcal{F}_{-}\left(v_{\mathrm{C}}\right)} .
$$

(iii) For each $v \in V_{\mathbb{C}}$, the operator

$$
x(v):=i\left(a^{*}(v)-a(\bar{v})\right)
$$

satisfies $x(v)^{*}=x(\bar{v})$. If $v \in V_{\mathbb{C}}$ is real (i.e., if $\bar{v}=v$ holds), the operator $x(v)$ is selfadjoint and has the norm $\|x(v)\|=\|v\|$.
How does $x(v)$ for $v \in V_{\mathbb{C}}$ relate to the Clifford multiplication from the left with v ?
Hint: For the statement about the operator norm, compute $x(v)^{2}$ for real $v \in V_{\mathbb{C}}$.

