

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 4 A & B

for the tutorial on Tuesday, June 4, 10:15 am (in Seminar Room 10)

Note that there will be **no lecture** on Monday, May 27; the **next lecture** is accordingly on Monday, June 3. Thus, there is only this (slightly extended) exercise sheet for the **next problem session** on Tuesday, June 4.

Exercise 1. Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a spectral triple with the faithful *-representation $\pi : \mathcal{A} \to B(\mathcal{H})$. Consider the state space $S(\mathcal{A})$ for the associated C^* -algebra $\mathcal{A} := \overline{\pi(\mathcal{A})}^{\|\cdot\|} \subseteq B(\mathcal{H})$. Prove the following assertions:

- (i) If the image of $\{a \in \mathcal{A} \mid \|[\mathcal{D}, \pi(a)]\| \leq 1\}$ in the quotient Banach space $A/\mathbb{C}1$ is a norm bounded set, then the spectral distance satisfies $d_{\mathcal{D}}(\varphi, \psi) < \infty$ for all $\varphi, \psi \in S(A)$ and induces a metric $d_{\mathcal{D}} : S(A) \times S(A) \to [0, \infty)$.
- (ii) For all $\varphi, \psi \in S(A)$, we have that

$$d_{\mathcal{D}}(\varphi,\psi) = \sup\left\{ |\psi(\pi(a)) - \varphi(\pi(a))| \mid a = a^* \in \mathcal{A} : \|[\mathcal{D},\pi(a)]\| \le 1 \right\}$$

Hint: In order to prove " \leq ", establish first that the set $\{a \in \mathcal{A} \mid \|[\mathcal{D}, \pi(a)]\| \leq 1\}$ is closed under the following maps: $a \mapsto \zeta a$ for each $\zeta \in \mathbb{C}$ with $|\zeta| = 1, a \mapsto a^*$, $a \mapsto \operatorname{Re}(a) = \frac{1}{2}(a + a^*)$, and $a \mapsto \operatorname{Im}(a) = \frac{1}{2i}(a - a^*)$.

Exercise 2. Let $(\mathcal{A}_1, \mathcal{H}_1, \mathcal{D}_1)$ and $(\mathcal{A}_2, \mathcal{H}_2, \mathcal{D}_2)$ be spectral triples with the faithful *representations $\pi_1 : \mathcal{A}_1 \to B(\mathcal{H}_1)$ and $\pi_2 : \mathcal{A}_2 \to B(\mathcal{H}_2)$, respectively. We call these two spectral triples *equivalent*, if there exists a *-isomorphism $\Phi : \mathcal{A}_1 \to \mathcal{A}_2$ and a unitary operator $U : \mathcal{H}_1 \to \mathcal{H}_2$ such that $U\pi_1(a)U^* = \pi_2(\Phi(a))$ for all $a \in \mathcal{A}_1$ and $U\mathcal{D}_1U^* = \mathcal{D}_2$. Show that in this case $\mathrm{ad}_U : B(\mathcal{H}_1) \to B(\mathcal{H}_2), x \mapsto UxU^*$ is an isometry which satisfies $\mathrm{ad}_U(\mathcal{A}_1) = \mathcal{A}_2$, where \mathcal{A}_1 and \mathcal{A}_2 are the C*-algebras associated to \mathcal{A}_1 and \mathcal{A}_2 , respectively, and prove that $\mathrm{ad}_U^* : S(\mathcal{A}_2) \to S(\mathcal{A}_1), \varphi \mapsto \varphi \circ \mathrm{ad}_U$ defines an isometry for the spectral distances, i.e.,

$$d_{\mathcal{D}_1}(\operatorname{ad}_U^*\varphi, \operatorname{ad}_U^*\psi) = d_{\mathcal{D}_2}(\varphi, \psi) \quad \text{for all } \varphi, \psi \in S(A_2).$$

please turn the page

Exercise 3. Consider the complex unital *-algebra $\mathcal{A} = \mathbb{C} \oplus \mathbb{C}$ with entry-wise operations. Let \mathcal{H}_1 and \mathcal{H}_2 be finite dimensional complex Hilbert spaces and put $\mathcal{H} := \mathcal{H}_1 \oplus \mathcal{H}_2$. Define the *-homomorphism $\pi : \mathcal{A} \to B(\mathcal{H})$ by

$$\pi(a) := \begin{pmatrix} a_1 \operatorname{id}_{\mathcal{H}_1} & 0\\ 0 & a_2 \operatorname{id}_{\mathcal{H}_2} \end{pmatrix} \quad \text{for all } a = (a_1, a_2) \in \mathcal{A}.$$

Further, take any linear operator $M: \mathcal{H}_1 \to \mathcal{H}_2$ and consider the operator

$$\mathcal{D} := \begin{pmatrix} 0 & M^* \\ M & 0 \end{pmatrix}.$$

- (i) Verify that $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple. Compute for each $a = (a_1, a_2) \in \mathcal{A}$ the commutator $[\mathcal{D}, \pi(a)]$ and show that its norm is given by $\|[\mathcal{D}, \pi(a)]\| = |a_2 a_1| \|M\|$.
- (ii) Consider the states $\delta_1, \delta_2 : \mathcal{A} \to \mathbb{C}$ that are respectively given by $\delta_1(a) = a_1$ and $\delta_2(a) = a_2$ for each $a = (a_1, a_2) \in \mathcal{A}$. Compute the spectral distance $d_{\mathcal{D}}(\delta_1, \delta_2)$.
- (iii) Show that the spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is *even*, i.e., there is a selfadjoint operator $\Gamma \in B(\mathcal{H})$ with the properties that $\Gamma^2 = \mathrm{id}_{\mathcal{H}}, \mathcal{D}\Gamma + \Gamma \mathcal{D} = 0$, and $\pi(a)\Gamma = \Gamma \pi(a)$ for all $a \in \mathcal{A}$. We call Γ a grading on $(\mathcal{A}, \mathcal{H}, \mathcal{D})$.