Assignments for the lecture
Introduction to Noncommutative Differential Geometry
Summer term 2019

Assignment 4 A \& B

for the tutorial on Tuesday, June 4, 10:15 am (in Seminar Room 10)

Note that there will be no lecture on Monday, May 27; the next lecture is accordingly on Monday, June 3. Thus, there is only this (slightly extended) exercise sheet for the next problem session on Tuesday, June 4.

Exercise 1. Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a spectral triple with the faithful $*$-representation $\pi: \mathcal{A} \rightarrow$ $B(\mathcal{H})$. Consider the state space $S(A)$ for the associated C^{*}-algebra $A:=\overline{\pi(\mathcal{A})}\|\cdot\| \subseteq B(\mathcal{H})$. Prove the following assertions:
(i) If the image of $\{a \in \mathcal{A} \mid\|[\mathcal{D}, \pi(a)]\| \leq 1\}$ in the quotient Banach space $A / \mathbb{C} 1$ is a norm bounded set, then the spectral distance satisfies $d_{\mathcal{D}}(\varphi, \psi)<\infty$ for all $\varphi, \psi \in S(A)$ and induces a metric $d_{\mathcal{D}}: S(A) \times S(A) \rightarrow[0, \infty)$.
(ii) For all $\varphi, \psi \in S(A)$, we have that

$$
d_{\mathcal{D}}(\varphi, \psi)=\sup \left\{|\psi(\pi(a))-\varphi(\pi(a))| \mid a=a^{*} \in \mathcal{A}:\|[\mathcal{D}, \pi(a)]\| \leq 1\right\}
$$

Hint: In order to prove " \leq ", establish first that the set $\{a \in \mathcal{A} \mid\|[\mathcal{D}, \pi(a)]\| \leq 1\}$ is closed under the following maps: $a \mapsto \zeta a$ for each $\zeta \in \mathbb{C}$ with $|\zeta|=1, a \mapsto a^{*}$, $a \mapsto \operatorname{Re}(a)=\frac{1}{2}\left(a+a^{*}\right)$, and $a \mapsto \operatorname{Im}(a)=\frac{1}{2 i}\left(a-a^{*}\right)$.

Exercise 2. Let $\left(\mathcal{A}_{1}, \mathcal{H}_{1}, \mathcal{D}_{1}\right)$ and $\left(\mathcal{A}_{2}, \mathcal{H}_{2}, \mathcal{D}_{2}\right)$ be spectral triples with the faithful $*$ representations $\pi_{1}: \mathcal{A}_{1} \rightarrow B\left(\mathcal{H}_{1}\right)$ and $\pi_{2}: \mathcal{A}_{2} \rightarrow B\left(\mathcal{H}_{2}\right)$, respectively. We call these two spectral triples equivalent, if there exists a $*$-isomorphism $\Phi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ and a unitary operator $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $U \pi_{1}(a) U^{*}=\pi_{2}(\Phi(a))$ for all $a \in \mathcal{A}_{1}$ and $U \mathcal{D}_{1} U^{*}=\mathcal{D}_{2}$. Show that in this case $\operatorname{ad}_{U}: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right), x \mapsto U x U^{*}$ is an isometry which satisfies $\operatorname{ad}_{U}\left(A_{1}\right)=A_{2}$, where A_{1} and A_{2} are the C^{*}-algebras associated to \mathcal{A}_{1} and \mathcal{A}_{2}, respectively, and prove that $\mathrm{ad}_{U}^{*}: S\left(A_{2}\right) \rightarrow S\left(A_{1}\right), \varphi \mapsto \varphi \circ \mathrm{ad}_{U}$ defines an isometry for the spectral distances, i.e.,

$$
d_{\mathcal{D}_{1}}\left(\operatorname{ad}_{U}^{*} \varphi, \operatorname{ad}_{U}^{*} \psi\right)=d_{\mathcal{D}_{2}}(\varphi, \psi) \quad \text { for all } \varphi, \psi \in S\left(A_{2}\right)
$$

Exercise 3. Consider the complex unital $*$-algebra $\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$ with entry-wise operations. Let \mathcal{H}_{1} and \mathcal{H}_{2} be finite dimensional complex Hilbert spaces and put $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$. Define the $*$-homomorphism $\pi: \mathcal{A} \rightarrow B(\mathcal{H})$ by

$$
\pi(a):=\left(\begin{array}{cc}
a_{1} \operatorname{id}_{\mathcal{H}_{1}} & 0 \\
0 & a_{2} \operatorname{id}_{\mathcal{H}_{2}}
\end{array}\right) \quad \text { for all } a=\left(a_{1}, a_{2}\right) \in \mathcal{A} .
$$

Further, take any linear operator $M: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and consider the operator

$$
\mathcal{D}:=\left(\begin{array}{cc}
0 & M^{*} \\
M & 0
\end{array}\right) .
$$

(i) Verify that $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple. Compute for each $a=\left(a_{1}, a_{2}\right) \in \mathcal{A}$ the commutator $[\mathcal{D}, \pi(a)]$ and show that its norm is given by $\|[\mathcal{D}, \pi(a)]\|=\left|a_{2}-a_{1}\right|\|M\|$.
(ii) Consider the states $\delta_{1}, \delta_{2}: \mathcal{A} \rightarrow \mathbb{C}$ that are respectively given by $\delta_{1}(a)=a_{1}$ and $\delta_{2}(a)=a_{2}$ for each $a=\left(a_{1}, a_{2}\right) \in \mathcal{A}$. Compute the spectral distance $d_{\mathcal{D}}\left(\delta_{1}, \delta_{2}\right)$.
(iii) Show that the spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is even, i.e., there is a selfadjoint operator $\Gamma \in B(\mathcal{H})$ with the properties that $\Gamma^{2}=\operatorname{id}_{\mathcal{H}}, \mathcal{D} \Gamma+\Gamma \mathcal{D}=0$, and $\pi(a) \Gamma=\Gamma \pi(a)$ for all $a \in \mathcal{A}$. We call Γ a grading on $(\mathcal{A}, \mathcal{H}, \mathcal{D})$.

