

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 5B

for the tutorial on Tuesday, June 25 (!), 10:15 am (in Seminar Room 10)

Note once more that there will be **no lecture** on Monday, June 17, and **no problem** session on Tuesday, June 18; the next problem session is thus postponed to Tuesday, June 25, and the next lecture takes place on Monday, June 24.

Exercise 1. Let \mathcal{H} be an infinite dimensional separable complex Hilbert space.

(i) Let $T \in K(\mathcal{H})$ and $N \in \mathbb{N}$ be given. Prove the formula

 $\sigma_N(T) = \inf \left\{ \|R\|_1 + N \|S\| \mid R \in \mathcal{L}^1(\mathcal{H}), S \in K(\mathcal{H}) \colon T = R + S \right\}$

for the value $\sigma_N(T)$ that was defined in Definition 4.5 of the lecture.

(ii) Like in Remark 4.10 (ii), we define for every $T \in K(\mathcal{H})$ and each $\lambda \geq 0$

 $\sigma_{\lambda}(T) := \inf \left\{ \|R\|_1 + \lambda \|S\| \mid R \in \mathcal{L}^1(\mathcal{H}), S \in K(\mathcal{H}) \colon T = R + S \right\}.$

Due to (i), this interpolates the values $\sigma_N(T)$. Show that this interpolation is in fact piecewise linear, i.e., prove that $\sigma_\lambda(T) = \lambda ||T||$ holds for every $\lambda \in [0, 1)$ and that

$$\sigma_{N+\lambda}(T) = (1-\lambda)\sigma_N(T) + \lambda\sigma_{N+1}(T)$$

holds for each $N \in \mathbb{N}$ and every $\lambda \in [0, 1)$.

Exercise 2. Let $(\mathcal{A}_1, \mathcal{H}_1, \mathcal{D}_1)$ and $(\mathcal{A}_2, \mathcal{H}_2, \mathcal{D}_2)$ be spectral triples with infinite dimensional separable complex Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$ and suppose that $\Gamma_1 \in B(\mathcal{H}_1)$ is a grading on $(\mathcal{A}_1, \mathcal{H}_1, \mathcal{D}_1)$. Put

 $\mathcal{A} := \mathcal{A}_1 \otimes_{\mathbb{C}} \mathcal{A}_2, \qquad \mathcal{H} := \mathcal{H}_1 \overline{\otimes}_{\mathbb{C}} \mathcal{H}_2, \qquad \text{and} \qquad \mathcal{D} := \mathcal{D}_1 \otimes \operatorname{id}_{\mathcal{H}_2} + \Gamma_1 \otimes \mathcal{D}_2.$

Prove the following assertions:

- (i) $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple.
- (ii) $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is θ -summable¹ whenever both of the spectral triples $(\mathcal{A}_1, \mathcal{H}_1, \mathcal{D}_1)$ and $(\mathcal{A}_2, \mathcal{H}_2, \mathcal{D}_2)$ are θ -summable.

¹Recall from Definition 4.11 that a spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is said to be θ -summable if $e^{-t\mathcal{D}^2} \in \mathcal{L}^1(\mathcal{H})$ for each t > 0.