Assignments for the lecture
Introduction to Noncommutative Differential Geometry
Summer term 2019

Assignment 5B

for the tutorial on Tuesday, June 25 (!), 10:15 am (in Seminar Room 10)

Note once more that there will be no lecture on Monday, June 17, and no problem session on Tuesday, June 18; the next problem session is thus postponed to Tuesday, June 25, and the next lecture takes place on Monday, June 24.

Exercise 1. Let \mathcal{H} be an infinite dimensional separable complex Hilbert space.
(i) Let $T \in K(\mathcal{H})$ and $N \in \mathbb{N}$ be given. Prove the formula

$$
\sigma_{N}(T)=\inf \left\{\|R\|_{1}+N\|S\| \mid R \in \mathcal{L}^{1}(\mathcal{H}), S \in K(\mathcal{H}): T=R+S\right\}
$$

for the value $\sigma_{N}(T)$ that was defined in Definition 4.5 of the lecture.
(ii) Like in Remark 4.10 (ii), we define for every $T \in K(\mathcal{H})$ and each $\lambda \geq 0$

$$
\sigma_{\lambda}(T):=\inf \left\{\|R\|_{1}+\lambda\|S\| \mid R \in \mathcal{L}^{1}(\mathcal{H}), S \in K(\mathcal{H}): T=R+S\right\} .
$$

Due to (i), this interpolates the values $\sigma_{N}(T)$. Show that this interpolation is in fact piecewise linear, i.e., prove that $\sigma_{\lambda}(T)=\lambda\|T\|$ holds for every $\lambda \in[0,1)$ and that

$$
\sigma_{N+\lambda}(T)=(1-\lambda) \sigma_{N}(T)+\lambda \sigma_{N+1}(T)
$$

holds for each $N \in \mathbb{N}$ and every $\lambda \in[0,1)$.

Exercise 2. Let $\left(\mathcal{A}_{1}, \mathcal{H}_{1}, \mathcal{D}_{1}\right)$ and $\left(\mathcal{A}_{2}, \mathcal{H}_{2}, \mathcal{D}_{2}\right)$ be spectral triples with infinite dimensional separable complex Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$ and suppose that $\Gamma_{1} \in B\left(\mathcal{H}_{1}\right)$ is a grading on $\left(\mathcal{A}_{1}, \mathcal{H}_{1}, \mathcal{D}_{1}\right)$. Put

$$
\mathcal{A}:=\mathcal{A}_{1} \otimes_{\mathbb{C}} \mathcal{A}_{2}, \quad \mathcal{H}:=\mathcal{H}_{1} \bar{\otimes}_{\mathbb{C}} \mathcal{H}_{2}, \quad \text { and } \quad \mathcal{D}:=\mathcal{D}_{1} \otimes \mathrm{id}_{\mathcal{H}_{2}}+\Gamma_{1} \otimes \mathcal{D}_{2}
$$

Prove the following assertions:
(i) $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple.
(ii) $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is θ-summable ${ }^{1}$ whenever both of the spectral triples $\left(\mathcal{A}_{1}, \mathcal{H}_{1}, \mathcal{D}_{1}\right)$ and $\left(\mathcal{A}_{2}, \mathcal{H}_{2}, \mathcal{D}_{2}\right)$ are θ-summable.

[^0]
[^0]: ${ }^{1}$ Recall from Definition 4.11 that a spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is said to be θ-summable if $e^{-t \mathcal{D}^{2}} \in \mathcal{L}^{1}(\mathcal{H})$ for each $t>0$.

