

Assignments for the lecture Introduction to Noncommutative Differential Geometry Summer term 2019

Assignment 6B

for the tutorial on *Tuesday*, July 9, 10:15 am (in Seminar Room 10)

Exercise 1. Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a spectral triple which is *p*-summable for some $1 \leq p < \infty$. Prove that $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is also θ -summable; more precisely, show that for each $t_0 > 0$ a constant C > 0 exists such that

 $\operatorname{Tr}(e^{-t\mathcal{D}^2}) \le Ct^{-p/2} \quad \text{for all } 0 < t < t_0.$

Hint: Use the unbounded functional calculus for \mathcal{D} .

Exercise 2. Let \mathcal{H} be any separable complex Hilbert space of infinite dimension. Prove that every Dixmier trace $\operatorname{Tr}_{\omega} : \mathcal{L}^{(1,\infty)}(\mathcal{H}) \to \mathbb{C}$ induces a seminorm by

$$\|\cdot\|: \mathcal{L}^{(1,\infty)}(\mathcal{H}) \to [0,\infty), \qquad T \mapsto \operatorname{Tr}_{\omega}(|T|).$$