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Chapter 1.

Introduction

Several “classical theories” in mathematics can be extended to the noncommu-
tative world. The appropriate framework is often obtained by the following
recipe:

(i) Take a classical space, i.e., a set X endowed with some additional structure
(e.g. a topological- or measure space, groups, manifolds, Lie groups, ...);

(ii) Consider a suitable algebra of functions on X (e.g., Co(X), C(X), L*>(X),
C>®(X),...);

(iii) Transfer the additional structure of the space X to its associated (com-
mutative) algebra of functions and provide an intrinsic characterisation of that
structure;

(iv) Drop the assumption of commutativitiy.

Finding a good axiomatic description in (iii) that allows one to perform
step (iv) is clearly the core problem and by no means straight foreward. The
right choice confirms itself by a “reconstruction theorem”, by which, in the
commutative case, the underlying space can be “recovered” from that set of
axioms. We list some prominent examples in [Table 1.1]

The actual “noncommutative space” is mostly just a “virtual” object behind
those algebras. The classical theories are thus rebuilt in an algebraic way,
immitating the dual picture on their associated algebras of functions.

This philosophy underlies also the theory of noncommutative differential
geometry that Alain Connes began to develop around the 80’s. His motivation
was to extend classical tools to

e spaces, that are “badly behaved” as point sets, but correspond naturally
to (noncommutative) algebras (e.g., Penrose tilings, the space of leaves of a
foliation, the phase space in quantum mechanics, ... )
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e general noncommutative situations without an underlying space.

But even for classical situations that are purely commutative, this point
of view gives new insights. Within noncommutative differential geometry,
manifolds are studied by some spectral data. The following definition is at the
heart of that approach.

Definition 1.1 (Alain Connes, 1994): A spectral triple is a triple (A, #,D)
where

e A is a unital complex *-algebra,

e 7 is a separable complex Hilbert space with a faithful *-representation

m: A— B(H),

e D is a (possibly unbounded) selfadjoint linear operator on H, say
D:HOdomD — H,
with compact resolvents, i.e., (D — A1)t € K(H) for all A € C — (D),

such that for all elements a € A the following holds: 7(a) dom D C dom D and
the commutator [D, 7(a)] :== D7(a) — m(a)D extends to an operator in B(H).

Example 1.2: Consider on T := {z € C | |z| = 1} the arc length measure m,
i.e., the push-foreward of the Lebesgue measure on R via the map

v: R — T, t — exp(it).

A function f: T — C is differentiable if and only if f o~v: R — C is so;
its derivative f': T — C is determined by f'(v(t))7'(t) = (f o~)'(t) for all
t € R. Take now H = L*(T,m) and A = C°°(T) with the *-representation
m: A— B(H) given by

m(f) == M;: L*(T,m) — L*(T,m), g— fg.

Further, we consider the densely defined operator

1
DoiHQdOHlDO—>H, g'—>f9/
1

on dom Dy := C*(T), which is a symmetric operator. One can show that D,
is essentially self-adjoint; let D be its closure, which is thus selfadjoint. Then
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(A, H,D) is a spectral triple. Indeed, if F: H — ¢*(Z) is the Fourier transform,
ie.,

A A 1
Fil(Tom) — £(B), s Bz, Fui= 5= [ 10Cdm(0)

then FDF ! is the multiplication by (n),cz, hence we see that for all A € C—Z
it holds (D — X\)~! € K(H); moreover, for f € A and g € C*(T), it holds

1D, 7()lg = Dolfg) ~ FDog = ()

We will see, that more general manifolds M induce spectral triples in a similar
way. Much of the structure of M can be recovered:

o d(p.q) = sup{[f(p) — f(a)| | [ € A [[[D,n(f)]| <1} is the geodesic
distance between p,q € M,

o [\ fdvol=c(n)Tr(f|D|™) for all f € A.

Exercises

Exercise 1.1: Let (A, H,D) be a spectral triple and let V' € B(H) be any
selfadjoint operator. Prove that (A, H, Dy ) for the unbounded operator Dy
given by Dy := D + V with domain dom(Dy ) := dom(D) is again a spectral
triple.
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Chapter 2.

Spectral triples associated to
manifolds

Spectral triples are (supposed to be) the right framework to extend classical
differential geometry to the noncommutative world. It is however not clear
offhand, how usual manifolds fit into that frame. In this chapter, we will see
that indeed each compact oriented smooth manifold induces a commutative
spectral triple in a natural fashion.

Definition 2.1 (Manifolds):

(i)

(i)
(iif)

(iv)

An n-dimensional topological manifold is a Hausdorff topological space
M which is locally euclidean, i.e., each point x € M has an open neigh-
bourhood that is homeomorphic to an open subset of R".

A (local) chart (U, ) of M consists of an open subset U C M and a
homeomorphism ¢: U — Q = p(U) C R™

A family A = {(U;, ¢;) | i € I} of charts satisfying M = U;c; U is called
an atlas of M. The homeomorphisms v, ;: ¢;(U; N U;) — ¢;(U; N U;)
given by 1; ; := ¢; o o7t wi(Uinu,) are called transition maps.

An atlas A of M is called smooth if all its transition maps are smooth,
i.e., C®. A chart (U, ) is said to be smooth with respect to a smooth
atlas A, if AU {(U,p)} is again a smooth atlas. A smooth atlas A is
called maximal, if every chart (U, ) that is smooth with respect to A
already belongs to A. Every smooth atlas A induces a maximal one by

Amax == {(U, ) | (U, p) is a chart smooth with respect to A}.

An n-dimensional smooth manifold is an n-dimensional topological mani-
fold M with a maximal smooth atlas A.
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Definition 2.2 (Tangent space): Let M be an n-dimensional smooth manifold.
We fix zg € M.

(i) A function f: V' — R on an open subset V' C M is said to be smooth, if
foe Hownv): ¢(UNV) — R is smooth for every smooth chart (U, ¢).

(ii) On the set of all pairs (V, f) consisting of an open neighbourhood V' of z
and a smooth function f: V — R, we introduce an equivalence relation
~ by

V1, f1) ~ (Va, f2) = IV CViNVy open,zg € V 1 fily = folv.

The equivalence class of (V, f), denoted by [f].,, is called the germ of f
at 9. We denote by C2°(M) the R-algebra of germs at z.

(iii) The R-vector space T,, M of all linear maps §: C°(M) — R satisfying
the product rule

5([f]a:o ’ [g]aco) = 5([f]aco) g(QT()) +f(.l’0) : 5([9]:60) v [f]:voa [g]éro € O;S(M)

is called the tangent space to M at xy.

Remark 2.3: In the situation of [Definition 2.2} let v: (—¢,&) — M be a smooth

path, i.e., v is continuous and ¢ o y|, -1 : v (U) — R™ is smooth for every
smooth chart (U, ¢), such that v(0) = zo. We call 7/(0) € T,,, M given by

Y (O)([fo) := (f 22)(0)

for all germs [f]., € Cg2 (M), the velocity vector of v at .
For every § € T,, M, there exists a smooth path v: (—¢,¢) — M such that
7(0) =z and ' (0) = 0.

Next, we “glue” the tangent spaces, yielding the so-called tangent bundle.

Definition 2.4 (Topological vector bundle): Let X be a Hausdorff topological
space.

(i) An n-dimensional (real / complex) vector bundle over X is given by a
topological space E and a continuous map 7: E' — X such that the following
conditions are satisfied:

e The fibre E, :== 71 ({x}) is a real / complex vector space of dimension n
for each z € X.

10
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e For each xg € X, there is an open neighbourhood U of xy and a home-
morphism 7: 7 HU) — U x ]K”ﬂ such that 7|1y = pry o 7, where
pry: U x K" — U is the projection onto the first component, i.e.,
pry(z,v) = x, and 7|g,: £, — {2} x K* = K" is a vector space iso-
morphism for all points z € U. We call (U, 7) a bundle chart (or a local
trivialisation).

(ii) A family A= {(U;, ;) | ¢ € I} of bundle charts (or local trivialisations)

satisfying X = U;¢; U; is called a bundle atlas. The transition maps

;5" (Ul N Uj) x K" — (Ul N Uj) x K™
given by o0; j :=T1; 0 Ti_1|(UmUj)X1Kn satisfying

7T_1(U,L' N UJ)

(U;NU;) x K» = (U; N U;) x K"

(zv)—=04 j(xv)=(x,S; ;(x)v)

for a continuous map S, ;: U; N U; — GL,(K) called the transition maps.

Definition 2.5 (Smooth vector bundle): Let M be a smooth manifold. An
n-dimensional smooth vector bundle over M is an n-dimensional topological
vector bundle over M, for which all transition maps are smooth.

Definition 2.6 (Tangent bundle): Let M be an n-dimensional smooth manifold
with maximal smooth atlas A = {(U;, ¢;) | i € I}. We put TM :=[[,epq TuM
and define 7: TM — M by 7(d) = = it § € T, M. We define the local
trivialisation by

7o N (Uy) — Uy x R, (x,0) — (z, @;5(5))

with the isomorphism O, ,: R" — T, M given by

n

©i0(V)([f]z) = 3 v/0i(f 09 ) (i())

Jj=1

for v = (v',...,v") € R, [f]. € C*(M). We endow T'M with the topology
defined by the following requirement:

W CTMopen <= Viel:rn(U,NW)CU; x R"is open.

Then T'M is an n-dimensional smooth vector bundle over M, called the tangent
bundle of M.

Here, K denotes either the field of real numbers R or the field of complex numbers C.

11
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Definition 2.7 (Smooth sections): Let 7: £ — M be a smooth vector bundle
over a smooth manifold M and let V' C M be open. A map s: V — FE is called
a smooth section if

(i) mos =idy,

(ii) For each local trivialisation 7: 771(U) — U x K", we have a smooth
composition T7os|yny: UNV — (UNV)xIK™. In fact, (Tos)(z) = (z, f(x))
forallz e UNV with f: UNV — K being a smooth function.

We write ['°(V, E) for the set of all smooth sections s: V' — E, which is a
K-vector space.

Definition 2.8 (Vector fields): Let M be a smooth manifold. A vector field on
M is a smooth section of the tangent bundle T M. We write

X(V) =TV, TM)
for the vector fields on the open subset V' C M.

Theorem 2.9: Let M be a smooth manifold of dimension n and let VC M be
open. Then the map

®: X(V) — der(C=(V)),  (2(X)f)(2) = X(2)([f]z)
is an isomorphism of real vector spaces.

Note that der(C'* (V")) denotes the space of derivations on C*°(V), i.e., linear
maps D: C*(V) — C*(V) that satisfy the product rule for all f,g € C>®(V):

D(f-g)=D(f)-g+f-D(g)-
Proof: (1) Take X € X(V) and f € C*°(V'). Then the map
h: z — R, z— X (x)([fz)

is smooth.

To see this, consider the bundle atlas A = {(U;, ;) | i € I} that we introduced
in [Definition 2.6l It suffices to show that h|y,ny is smooth for all i € I. By
IDefinition 2.7 (ii), we find a smooth function g = (¢1,...,9,): U;NV — R"
such that 7;(X(x)) = (z,¢g(z)) for all z € U; N V. Thus

X(x) =7 (z,9(x)) = (z,0ia(g(x)))

and h(z) = X (2)([flz) = Oi2(g(2))([fla) = Xfo1 9;(2)(9;(f 0 7 1) (wi()) for
all x € U; NV, which shows that h is smooth on U; N V.

12
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(2) Take X € X(V). Because of the preceeding consideration, we have a
well-defined map

O(X): C=(V) — C=(V),  (2(X)f)(x) = X(2)([f]z).

This ®(X) is now in fact a deriavation.
To see this, let f,g € C°(V) be given. Then, for all z € V', we have

(@X)(f - 9)(x) = X(2)([fle - [9]e) = X (2)([f]2)g(x) + f(2) X (2)([g]2)
((X)(f) -9+ f- (2(X)g))(),

as desired.

(3) By the above steps, we now have a well-defined map
P: X(V) — der(C®(V)), X +— ®(X),

which is clearly linear.

(4) For the next steps, we need a technical result. Let U be an open
neighbourhood of a point xqg € M. There exists a smooth function p: M —
[0, 1] with compact support

supp(p) = cl({z € M | p(z) #0}) CU

which is identically 1 in an open neighbourhood of xy. We call p a bump function
for (U, zg) (there are such bump functions, take one in R" and transport it to
M via a chart).

(5) Take D € der(C*(V)) and zg € V. We define the map
Dlgy: C=(V) — R, f+— (D(f))(x0).

If f1, fo € C=(V) satisty fi|y = f2|v for an open set U C V with zq € U, then

D|$0(f1) = D’ﬂﬂo(f2)'
To see this, take a bump function p for (U, ). Since p- (f1 — f2) = 0 we get
that

0= Dlasy(p- (f1 = f2)) = Dla(p)(f1 — f2)(x0) + p(w0) - Dlsy (f1 — f2)
= Dls,(f1) = Dluy(f2)

(as f1 and fy agree on U and p(zo) = 1) and thus D|,,(f1) = Dl (f2), as
desired.

13
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(6) We thus get a well-defined map
(W(D))(x0): C(V) — R, [flag = Dlaolp- fIv)

where, for a (U, f) representing [f].,, p is any bump function for (U, z() and
pf € C®(M) is defined (in fact well-defined) by

0, if z ¢ supp(p),

(ph)(@) = {p(x)f(x), itx eU.

Clearly, (V(D))(zo) € TyyM.
(7) If we now take a derivation D € der(C>°(V')), then the induced map

U(D):V —TM, z+— (¥(D))(x)

belongs to X(V).

(8) Finally, we get a linear map
U: der(C*(V)) — X(V),

which satisfies ® o ¥ = idgey(co(vy) and ¥ o & = idy(y). .

Remark 2.10: Like vector spaces underly linear algebra, vector bundles underly
what can be seen as “parametrised” linear algebra. Indeed, various constructions
for vector spaces can be generalised to that setting.

Let X be a Hausdorff topological space and let £ and F' be vector bundles
over X (both real or complex) of dimension n and m, respectively.

(i) The Whitney sum (or direct sum) E'@® F is the vector bundle of dimension
n+mwith (FE® F), =E,®F, forall z € X.

(ii) The tensor product bundle E ® F is the vector bundle of dimension n - m
with (F® F), = £, ® F, for all z € X.

(iii) The homomorphisms bundle hom(E, F) is the vector bundle of dimension
n - m with hom(F, F), = hom(E,, F,) for all z € X.

Analogously, the dual bundle E* (see assignment 2A, exercise 1 (i)), the ezterior
product \P E, the vector bundle mult’(E) of all p-multilinear maps and the
vector bundles symP(E) and alt”(E) of all symmetric— respectively alternating
p-multilinear maps can be defined.

14
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Definition 2.11 (Riemannian metric): Let M be a smooth manifold of dimen-
sion n. A Riemannian metric on M is a smooth section g of the vector bundle

sym?(TM) such that
9o: ToM X T,M — R

is an inner product on T, M for all z € X.

Remark 2.12: (i) A topological space X is said to be paracompact if every
open cover (U;);er of X has an open refinement (V;),cs (i-e., (V;)jes is an open
cover of X and for all j € J there is ¢ € I such that V; C U;) that is locally
finite (i.e., every x € X has a neighbourhood V' such that only finitely many
V; (j € J) have non-trivial intersection with V).

(ii) Let X be a topological space. A parition of unity on X is a family (p;)ier
of continuous functions p;: X — [0, 1] such that

e Fach x € X has an open neighbourhood V' such that only finitely many

pi satisty pilv # 0,

e For all x € X we have },c; pi(z) = 1.
We say that (p;)ics is subordinate to an open cover (U;)ier of X, if supp(p;) C U;
forall i € 1.

(iii) On a paracompact space X, each open cover (U;);e; of X has a subor-

dinate partition of unity (p;);e;. If X = M is a paracompact smooth manifold,
then each p; can be chosen to be smooth.

Theorem 2.13: Let M be a smooth manifold of dimension n. Suppose that M
is paracompact. Then there is a Riemannian metric on M.

Proof: Take a bundle atlas A = {(U;,7;) | i € I} of TM and let (p;)icr be a
smooth partition of unity subordinate to (U;);c;. We obtain a Riemannian
metric by

9201, 02) 1= D _ pi(2)(07; (01), O 5 (82))

icl
for all z € M and 61,09 € T, M, where (-, ) is the standard inner product on
R"™. O

Definition 2.14 (Differential forms): Let M be a smooth manifold of dimen-
sion 1.

(i) The dual bundle 7% M to the tangent bundle M is called the cotangent
bundle.

15



Chapter 2. Spectral triples associated to manifolds

(ii) A smooth differential form of degree p (briefly p-form in the following) is
a smooth section of AP T* M. We put QP(M) :=T'*°(M, \P M). We call
Q* (M) = D50 (M) the exterior algebra.

(iii) The exterior derivative is the unique family (dP),>o of R-linear maps
dP: QP(M) — QPTHM) satisfiying

e Forall f € Q°(M) =C>(M) and all z € M
(@ f)(@): TM —R, 5+ 8([f]a);

e For all p > 0 it holds dP*! o dP = 0,
e For all w € QP(M),n € QI(M) it holds

d"w An) = d'(w) A+ (=1)Pw A d(n)
where A on 2°(M) is defined pointwise, i.e., (wWAnN)(x) = w(z) An(z)
in A\PTITM.

(iv) Let T* Mg be the complezification of T* M, i.e., T*M¢ = T*MR(MxC),
where M x C is the real trivial bundle (i.e., m: MxC — M, (z, \) — z) of
dimension 2 (note that C = R?). We put Qf(M) := (M, N T* M¢).

Definition 2.15 (Orientation perserving): Let U,V be open subsets of R™". A
diffeomorphism f = (f1,..., f"): U — V is said to be orientation preserving
it for all x € U it holds

det([0; f*(2)]1<ij<n) > 0.

Definition 2.16 (Orientation of smooth manifolds): Let M be a smooth man-
ifold.

(i) A smooth atlas is called oriented if all its transition maps are orientation
preserving.

(ii) We say M is orientable if it admits an oriented smooth atlas.

(iii) An orientation on M is a maximal oriented smooth atlas.
Theorem 2.17 (Integration of smooth functions): Let M be an oriented n-

dimensional smooth manfold which is paracompact. Let g be a Riemannian
metric on M. Then there exists a unique linear map

/Mzch(M)—uR, fl—)/Mf

16
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on the subspace C°(M) C C*(M) of compactly supported functions such that
the following condition is satisfied: For every local chart (U, ) in the mazimal

oriented smooth atlas A of M and for each f € C°(M) with supp(f) C U we
have that

/ / 1) (detgiJr<picn) 2 A" 2.1)

Here, \" is the Lebesgue measure on R™ and the functions gx; € C®(p(U)) are
for each x € U determined by

gr1(2(@) = go((d2) () Ol o(a)): (dip) (@) (Dl p(a))

Note that {Ok|u@) | 1 < k < n} s the basis of Tym)R™ introduced in
(i) and (dy)(z): T,M — T, x)R" is the differential of ¢ at x, which is defined
ford € T,M and [fly.) € o) (R”) by

((de)(@)0)([fl @) = ([ o ¢la)-

In fact, (dp)(x) is bijective since ¢ is bijective.

Remark 2.18: (i) The assumption that M is oriented guarantees that the
right-hand side of is well-defined, i.e., independent of the particular
choice of the chart (U, ).

Using a partition of unity subordinate to the family (U;);e; for a maximal
oriented smooth atlas A = {(U;, ;) | i € I}, say (pi)icr, one can then define

for general f € C°(M)
| r=3 o
’LEI

Since supp(p;f) C U; for each i € I.

(ii) [Theorem 2.17| merges actually two different concepts, namely on the one

hand the integration of compactly supported n-forms, i.e.,

/:QZ(M)—HR, wH/w
M M

which requires only that M is oriented and on the other hand the volume
form dvol € Q"(M) of an oriented Riemannian manifold (M, g); in general,
w € Q*"(M) is called a volume-form if w vanishes nowhere, and a paracompact
smooth manifold M is orientable if and only if a volume form exists; in fact,
fixing an equivalence class of volume forms specifies an orientation and vice versa;

17
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dvol is chosen such that dvol(x), for each z € M, is normalised with respect to
the inner product on A" 7'M induced by g, i.e., (dvol(z), dvol(x)>/\n rem = L.
One can show that for all f € C>°(M)

[ f o

(iii) Let V' be a finite dimensional real vector space and let (-,-): V' xV — R
be an inner product on V. We thus have an isomorphism ®: V' — V* x +— (-, x)
which allows us to define an inner product (-, -)y«: V* x V* — R for ¢,¢ € V*
by

where f dvol € Q(M).

(@, Vv = (27 (), 7 (¥)).
For every p € IN, we extend the latter to an inner product
P P
<'v'>/\pV*: /\V* X /\V* — R
b for o1 A== Ay, Y1 AL p, € APV by

(PrA - Npp, by A Aiy) vy = det([{or, Vi) v+]i<iizn)-

When applied to each fibre of T'"M for an oriented paracompact smooth manifold
M with respect to the inner product induced by a Riemannian metric g on
M, we get for each p > 0 an inner product (-,-)gr(rg): QE(M) x Q2(M) — R
for w,n € Q2(M) by

(s Moz = /M (), (&) g 12 g dVOL()

In the case p = n, (-,-) \p 7z (ar) Was used in (iii). The latter extend naturally
to inner products

<'7 '>Q€’C(M): Q%,C(M) X Q%,C(M) — C.

Theorem 2.19 (Hodge-de Rham triple): Let M be an oriented compact smooth
manifold of dimension n with Riemannian metric g. Consider

(i) the unital complex *-algebra A := C*(M, C),

18



Chapter 2. Spectral triples associated to manifolds

(ii) the separable complex Hilbert space H = L*(Ne T*M, g), which is ob-
tained as the completion of the complex exterior algebra Q{(M) =
D,>0 Q4 (M) with respect to the inner product given by

n

<(w07 SR ’wn)a (7707 s 77771)) = Z(wp’ 7719>Q€,(/\/()

p=0

and the *-representation 7: A — B(H) given by multiplication, i.e.,
7(f)(w) == fw for every f € A and w € H,

(iii) the unbounded operator Dy := d-+d*, where d* is the adjoint of the densely
defined operator
d: H D domd — H, w — dRe(w) + idIm(w)
with domain domd = Qg(M).

Then Dy is essentially self-adjoint; let D be its closure, which we call the Hodge-
de Rham operator. The Hodge-de Rham triple (A, H, D) is a commutative
spectral triple in the sense of |[Definition 1.1, We call A := D? the Hodge
Laplacian.

Definition 2.20: Let V' be a K vector space with an inner product (-,-). Put

. p
L: VXV — AV, VL (01 A - Ap) =3 (= 1) T (v, Yo As - ATRA - Ay,
K k=1

Remark 2.21: The proof of Theorem 2.19 relies mostly on techniques that are
(not yet) at our disposal. We can understand, however, how commutators
[D,o(f)] for f € Alook on H. They are given by the Clifford multiplication

with df from the left, i.e., for all w € ¢, we have
D, 7(f)|w = df ew. (2.2)
The Clifford multiplication is defined on fibres as follows: On the exterior

algebra A\g Ve == @,>¢ NG Ve for the complexification Vg := V ®g C of a finite
dimensional real Hilbert space (V, (-, -)), we define

L: V@ X /\qu —)/\VC
C C
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Chapter 2. Spectral triples associated to manifolds

by

p
L(or Ao Ary) = > (=1 N ug, D) evr A= AT A+ Ay
k=0

Note that, for v = v ® A € Vg, we put ¥ := v ® \; the inner product
(-,-): Vg x Vg — C is defined by

(U1 @ A1, u9 @ Ag) i= (g, Ug) A A1
Thenvew:=vAw—vLwforallve Vegand we Ag.
(1) For all f € A,w € Q¢ (M) it holds
d*(fw) = fd'w — df L w.

To see this, we take n € Q& (M) and compute with respect to the inner
product (-, ) := (-, -)qe,(m) that
(dn, fw) = (fdn,w)
= (d(fn),w) = (df A n,w)
<f777d* > <"7adf|—w>:<77afd*w_df|—w>
from which the assertion follows.

(2) Forall f e A, we Qg(M) it holds
D, 7(f)] = df ew
To see this, consider the following computation:
[D,7(f)] = ld, 7(f)]w + [d", 7(f)]w
= d(fw) — fdw+ d*(fw) — fd'w=df Nw —df Lw = df e w.

That [D, 7(f)] extends to bounded linear operator on H, will be discussed later.

Further, we note that Q& (M) C dom d*, which justifies that Dy = d + d* is
densely defined with dom Dy = Q&(M). This can be shown with the help of the
Hodge star operator *: Q&(M) — Q&(M) which associates to each w € Qf (M)
the unique *w € Qg *(M) such that for all z € M and n € Q™ (M)

@An)(x) = (n(z), (xw)(2)) Anr 1 g dVOl(2)

T

In fact, one can show that

d*|ﬂé(/\/l) = (_1)nk‘+1 % d X .
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Chapter 2. Spectral triples associated to manifolds

That D, is essentially selfadjoint follows from results about general symmetric
differential operators on manifolds (based on Friedrichs modifiers). In order to
verify that D has compact resolvents, one defines the Sobolev spaces

He={weH]|(1+A) weH}

for s > 0 and uses the Rellich Lemma to show that H; < Hj is compact, which
implies that
(I+A) V2 H=Hy—H — Hy=H

is compact and hence (D —il1)~! is compact.

Remark 2.22: If the manifold M carries more structure (i.e., spin®-manifold),
there is another spectral triple (A, D, H) associated to M, with D being the
Dirac operator. We do not go into details here.

Exercises
Exercise 2.1: (i) Let xy € R™ be given. For j = 1,...,n, we define a linear
map 0Ojle,: Coo(R™) — R by 0)a0([f]zo) = (0;f)(20) = 88;]_ (x0) for every germ

[flzo € C2(R™). Prove that {0)ls, | j = 1,...,n} forms a basis of the tangent
space T,,R".

(ii) Let M be a n-dimensional smooth manifold with the maximal smooth
atlas A = {(U;, ¢;) | i € I}. Show that for every i € I and each zy € Uj;, the
linear map

@oni R — TxoM
that is defined by

n

Oieo (1) (/1) = 207 (5(f 0 &7 1)) (o))

J=1

for each v = (v',...,v") € R" and every germ [f],, € C22(M), is an isomor-

phism of real vector spaces.

Exercise 2.2: (i) Let E be an n-dimensional (real or complex) vector bundle
over a Hausdorff topological space X.

Construct an n-dimensional (real or complex) vector bundle E* over X, such
that for each x € X the fibre E} of E* is the dual space of the fibre F, of E,
ie., Ef =hom(E,, K).

We call E* the dual bundle of E.
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Chapter 2. Spectral triples associated to manifolds

(ii) Let E be an n-dimensional smooth (real or complex) vector bundle over
a smooth manifold M. Show that the dual bundle E* of E is also smooth.

Exercise 2.3: Complete the proof of of the lecture by proving the
following assertions for a smooth manifold M of dimension n and an open

subset V' C M:

(i) For every D € der C*(V), the map ¥(D): V — TM,z — (V(D))(z)
belongs to X(V'). Recall that (¥(D))(z) € Ty, M for any point xy € V is
defined by

(‘I]<D))(x0) C;)S(M) — R? [f]wo — D‘Io(p ’ f’V)v

where p: M — [0, 1], for a chosen representative (U, f) of the given germ [f],,,
is a bump function for (U, x).

(ii) The induced linear map ¥: der C*(V) — X(V), D — V(D) satisfies
boV = idder C>=(V) and Vod = idx(v),
where ®: X(V') — der C*(V) is the linear map defined in [Theorem 2.9|

Exercise 2.4: Let M be an oriented paracompact smooth manifold of dimension
n and let g be a Riemannian metric on M. Show that for every f € C°(M)
with the property that supp(f) C U for some local chart (U, ¢) in the maximal
oriented smooth atlas A of M, the value [ v J that is assigned to f by formula
(2.1) of the lecture, does not depend on the particular choice of (U, ¢).

Exercise 2.5: Let M be an oriented compact smooth manifold of dimension n
and let g be a Riemannian metric on M. Prove the identity

(df Am,whas v = (0, df L w)aem)
for all f € C*°(M,C) and all w,n € QL(M).
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Chapter 3.

The geodesic distance in
noncommutative geometry

Associating a spectral triple such as the Hodge-de Rham triple to a compact
oriented smooth Riemannian manifolds follows the philosophy of “spectral
geometry”, where such classical geometric objects are studied by spectral
properties of canonically associated differential operators. At the same time,
this allows to carry classical concepts over to a noncommutative setting.

In this chapter, we discuss the geodesic distance within the framework of
spectral triples.

Definition 3.1 (Geodesic distance): Let (M, g) be a Riemannian manifold, i.e,
M is a paracompact smooth manifold with Riemannian metric g, and let
xg, 21 € M. Then

(i) We denote by I'(zg, z1) the set of all smooth paths ~: [0,1] — M sat-
isfying v(0) = xo, 7(1) = z;. Note that M is connected if and only if
['(xg, x1) is non-empty for every choice of points zg, 1 € M.

(ii) If v € T'(wo, x1) is given, we define +'(t) € T,y M for each t € [0,1] by

Y (@) ([flyw) == (f o) (t) for all [f],u) € jj?t)(/\/l)ﬁ The length L(7y) of
v is then defined as

Liy) = / 0 (7 (), ()2 dt

iii) Suppose that M is connected. The geodesic distance d,(xg, x1) between
pp 9 g
o and z; is defined as

dg(o, x1) = Inf{L(7) [ v € ['(zo, 1)}
Tt happend in the same way in Remark 2.3.
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Chapter 3. The geodesic distance in noncommutative geometry

Remark 3.2: (i) On a connected Riemannian manifold (M, g), the geodesic
distance induces a metric

dg: M x M — [0, 00), (20, 21) — dg(z0, 1)

called the Riemannian distance function. Note that if xy # x1, the geodesic
distance dy(xo, r1) is a positive number. Indeed, for v € I'(xg, z1) and a local
chart (U, ) with xy € U and z; ¢ U, we have for all t € [0, 7] the equality

G0 (Y (8),7'(1)) = (GOv () (8), 0/ (#)
where G = (gk1)1<ki<n: ©(U) — M, (R) defined for all z € U by
(@) = g2 ((d) (@)™ (Onlo)), (d9) () (Dl ) )

(see Theorem 2.17) and the smooth map v: [0,T] — R",t — ¢(7(t)), where
T € [0, 1] is chosen such that v([0,T]) C U.

Take r > 0 such that cl(B(¢(xg),r)) C @(U) and V := o 1 (B(p(x),7))
which is an open subset of U. We find 6 € (0, 1] such that for all y € B(¢(x),r)
and £ € R" it holds

SlEll < (Gy)E, &) < 57 HI€]l.
Thus

1oz [ " g (2 (0, ) d
- / (GO (1), o ()2 d

2o [Cwonacz o [0 i = () — ot

for every 7" € (0,T] with v([0,7"]) C V. By enlarging T" and taking the limit
in 7", we infer that L(y) > dr > 0 and thus we have d,(zo,z1) > dr > 0.

(ii) The topology on M induced by the metric d, agrees with the given
topology on M. This can be shown by arguments similar to (i). In fact, one
shows that for each o € M and a local chart (U, ) with zy € U, an open
neighbourhood V' C U of xy and 6 € (0,1], it exists > 0 such that for all
x € V it holds

3lo(x) = p(0)] < dy(a,20) < 6~ () — (o),
and dy(x,x0) > or forallz € M —V.
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Chapter 3. The geodesic distance in noncommutative geometry

(iii) A connected paracompact smooth manifold is second countable (i.e.,
admits a countable base). Thus, it follows from the Urysohn metrisation
theorem that the topology on M must be metrisable; this is in keeping with
(ii).

(iv) Let (My, ¢1) and (Ma, g2) be two connected Riemannian manifolds.
Then every isometry ¢: (My, g1) = (Ma, ga), i.e., a map p: M; — M, that
satisfies for all xg, z; € M; that

d92 (90(550)7 ‘:0('%1)) = d91 (.750, ml)

is necessarily smooth and satisfies *gs = g; — this is the result of the Myers-
Steenrod theorem from 1939.

Note that if ¢: M; — M, is a smooth immersion between (paracompact)
smooth manifolds M; and M5 and if g is a Riemannian metric on M5, then
p*g is the Riemannian metric on M given by

(¢9)(c, B) = go(w) ((dip) () (@), (d) (x)(B))

for all x € M; and a, f € T, M;, where (dp)(x): T,M; — T, M, is defined
as in (Theorem 2.17); ¢ is called an immersion, if (dp)(z) is injective for each

r e M.

Our goal is to “dualise” the definition of the geodesic distance such that it
fits into the framework of spectral triples.

Theorem 3.3 (Musical isomorphisms): Let (M, g) be a Riemannian manifold.
Then g can be seen as a positive definite pairing on smooth vector fields, i.e., a
map
g: X(M) x (M) — C°(M)
which is C*°(M)-bilinear and satisfies g(X,X) > 0 for all X € X(M) and
9(X, X)(z) =0 at z € M if and only if X(x) = 0.
This induces an isomorphism (in fact, a C*(M)-bimodule map)

b: X(M) — QYM), X +— X" :=g(X,").

Its inverse §: QY (M) — X(M), w — ¥ is determined by w(X) = g(w*, X) for
all X € X(M). The inner product on Q'(M) defined in (Remark 2.18) (iii)
satisfies

<W777>91(M) = / Q(Wﬁanﬁ)
M

for all w, § € DM, since (w(z), (@) = go(wH(x), 7F(2)) for cach
r e M.
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Chapter 3. The geodesic distance in noncommutative geometry
Definition 3.4: Let (M, g) be a Riemannian manifold. The gradient grad f of
a function f € C*(M) is the vector field

grad f == (d°f)* € X(M)

with d°f € Q'(M) as defined in (Definition 2.14) (iii). We thus have that for
each x € M and § € T,M

gs(grad, f,8) = (d"f)(x)(9). (3.1)

Definition 3.5: Let (M, g) be a compact Riemannian manifold. On X(M), we
define a norm ||-|| by

1X[lo = max 0o (X(2), X(2))  ¥X € X(M).

Theorem 3.6: Let (M, g) be a compact and connected Riemannian manifold.
Then, for all xoy, x;1 € M, we have that

dyg(z0, 71) = sup{|f(x1) — f(zo) | f € CF(M) : |lgrad f|l < 1}

Proof: Take any v € I'(xg,x;). Then, for every f € C*°(M), it holds

) = f(a) = F6) = FO) = [ (£ o) By
and for each t € [0, 1], we have

(f o) (t) = (") (1) = gy (grad,q £,7' (1)),
so that the Cauchy-Schwarz inequality yields
[(fo 'Y)/(t)| < g’}’(t)(gradfy(t) e gradfy(t) f)l/zgv(t) (VI(t% Pyl(t))l/z
< llgrad fllsog (v (£). 7' (1)) 2.

In summary, we get |f(x1) — f(xo)| < |lerad f||oo L(7y). We infer from the latter
that

sup{[f(z1) — f(xo) | [ € CF(M) : [lgrad flloo <1} < dy(w0,21).

In order to prove “>”, we consider the function fo: M — R, = +— d(xg, ).
While fj is not (necessarily) smooth, the triangle inequality for d, impiles that
fo is at least Lipschitz continuous with Lipschitz constant 1. For every ¢ > 0,
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Chapter 3. The geodesic distance in noncommutative geometry

we find h. € C*°(M) such that ||fo — |l < € and ||grad he||oo < 1+ &; put
fe == =h. € C®(M). Then ||grad f.||c <1 and it holds

1+e

o) — fo()] = ——[hela) — (o)

1+e¢
= o) = (olan) — helen)) + (hero) — folan)
> 11H<\f0(331)\ = (Ifo(z1) = he(z1)| + [ fo(wo) — hs(aio)\)
> Ldg(xo,xl)— 2 )

1+¢ 1+¢

which shows that for every ¢ > 0 it holds

g<CL’0,ZL‘1) 2¢e

d
sup{|f(z1) — f(zo)| | f € C°(M) : |lgrad f|loo < 1} > il

We conclude by taking the limit ¢ | 0. O

The preceeding motivates the following definition:
Definition 3.7: Let (A, H,D) be a spectral triple. We define by
A= cly(m(A)) € B(H)

a C*-algebra and denote by S(A) the state space of A. We define for ¢, 1) € S(A)
by

dp(p, ) := sup{|¢(n(a)) — ¢(x(a))| | a € A |[[D,7(a)]|| <1} € [0, 00]
the spetral distance between ¢ and 1.

In view of Remark 3.2 (iv), the following theorem says that the Hodge-de
Rham triple remembers the metric.

Theorem 3.8: Let (M, g) be a compact oriented Riemannian manifold and
(A, H,D) be the Hodge-de Rham triple for (M, g). Then the faithful representa-
tion m: A — B(H) extends to a faithful *-representation 7#: C(M,C) — B(H)
which induces an isometric *-isomorphism

7: C(M,C) —— A= cl(A) C B(H).

Define 6, € S(A) for x € M by 0,(7(f)) := f(z) for f € C(M,C). If M is

commutative, then dy(xo, 1) = dp (0, 0s,) for all xg,x1 € M.
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Proof: (1) By definition of H, it is easily seen that each f € C(M,C)
defines an operator 7(f) € B(H) by 7(f)w = fw for all w € H with
17O < || flloo; in fact, we have that ||7(f)|| = || ]|, since 7(f) restricts to
the ordinary multiplication operator on L?(M,g) = cl(Q%(M)), for which
we know ||7(f)|2(mg) || = | flloo- Thus, 7: C(M,C) = B(H), f— 7(f) is a
faithful (isometric) *-representation, which extends 7: A — B(H) and induces
an isometric *-isomorphism C(M,C) = A.

(2) By equation (Eq. 2.2) in (Remark 2.20), we have for f = f € A, and
forms w € Qg (M), and each point x € M that

([D,m(flw)(z) = (df)(z) e w(x) = c((df ) (x))w(x),

where, for each real v € T M, the operator
c(v): NTiMe — N\TiMe, WV w
C C

is an isometry (refer to (Exercise 3B 1(ii))). Hence

1D, 7))@l g2 720t < 1)@ e - 0@l g2 720
We conclude that
12,7 llogcan) < (mapslh (@D @lirzmne ) - lelogan

and so, by (Definition 3.4) and (Definition 3.5),

1D, 7)) < mesl| () (@) e = lrad £l

Optimising w, we get that ||[D, 7(f)]|| = ||erad f|| and thus, by (Theorem
3.6) and (Exercise 4AB - 1(ii))

dg(0, v1) = sup{[f (1) — f(zo)| | f € CF(M) : |lgrad flloc <1}
= sup{|0z, (f) = 0o (N | f = f € A [[D, (NI < 1} = dp(6s9, 0z,

which concludes the proof. O
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Exercises

Exercise 3.1: Let (A, H, D) be a spectral triple with the faithful *-representation
m: A — B(H). Consider the state space S(A) for the associated C*-algebra
A= cly(7(A)) € B(H). Prove the following assertions:

(i) If the image of the set {a € A | ||[D,7(a)]|| < 1} under the canonical
projection in the quotient Banach space A/C1 is a norm bounded set,
then the spectral distance satisfies dp (¢, 1)) < oo for all ¢, € S(A) and
induces a metric dp: S(A) x S(A) — [0, 00).

(ii) For all ¢,v € S(A), we have that

dp(¢,¥) = sup{[¢(7(a)) — d(m(a))| | a = a” € A:|[[D,m(a)]]| < 1}.

Hint: To prove “<”, establish first that the set {a € A | ||[D, w(a)]|| < 1}
is closed under the following maps: a +— (a for each ( € C with |(| =1,
1

ar a*, a Re(a) = i(a+a*), and a — Im(a) = 5 (a — a*).

Exercise 3.2: Let (A;,H1,D;) and (A, Ha, Ds) be spectral triples with the
faithful *-representations m : A; — B(H1) and 7 : Ay — B(Hs), respectively.
We call these two spectral triples equivalent, if there exists a *-isomorphism
®: A; — A, and a unitary operator U : H, — Hs such that for all a € A; it
holds
Umi(a)U* = mo(P(a))
and UD,U* = D,.

Show that in this case ady: B(H1) — B(Hsa),x — UxU* is an isometry
which satisfies ady(A;) = Ay, where A; and A, are the C*-algebras associated
to A; and Aj, respectively, and prove that adj;: S(A2) = S(A41),¢ — ¢ oady
defines an isometry for the spectral distances, i.e.,

le (ad*U (ba ad*U w) = dD2 ((ba w> for all (ba w S S(A2>

Exercise 3.3: Consider the complex unital *-algebra A = C ® C with entry-
wise operations. Let H; and Hs be finite dimensional complex Hilbert spaces
and put H := H; @ Hs. Define the *~homomorphism 7: A — B(H) for all

a = (a1, az) € A by
N R idHl 0
7T(CL) o ( 0 (05} ldH2> ’

Further, take any linear operator M : H; — Hs and consider the operator
0 M*
o (8, 0)
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(i) Verify that (A, H, D) is a spectral triple. Compute for all a = (a1, as2) € A
the commutator [D, 7(a)] and show that its norm is given by

1D, m(a)]l] = lag — ar][[M]].

(ii) Consider the states d,d2: A — C that are respectively given by 01(a) = ay
and d3(a) = as for each a = (a1, as) € A. Compute the spectral distance

dp(01,02).

(iii) Show that the spectral triple (A, H,D) is even, i.e., there is a selfadjoint
operator I' € B(H) with the properties that I = idy, DI + I'D = 0,
and 7(a)l' = I'n(a) for all a € A. We call I' a grading on (A, H, D).
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Chapter 4.

The Riemann-Lebesgue measure in
noncommutative geometry

In (Chapter 3), we have seen that the geodesic distance on a connected, compact
and oriented Riemannian manifold can be recovered from its associated Hodge-
de Rham triple via Connes spectral distance.

In this chapter, we will discuss the noncommutative integral, by which
integration of (smooth) functions with respect to the Riemann-Lebesgue measure
on Riemannian manifolds as introduced in (Theorem 2.17) is generalised to the
framework of spectral triples.

Like in quantum mechanics, the underlying idea is that operators on a
separable complex Hilbert space H with dimH = oo take over the role of
complex variables, while selfadjoint operators on ‘H correspond to real variables.

Remark 4.1: Recall (Theorem 9.8 from the Functional Analysis I lecture notes)
that T' € B(H) is compact if and only if 7" can be approximated in operator
norm on B(#H) by finite rank operators; equivalently,

Ve > 03V C H subspace,dimV < oo : | Ty <e,

where T|y1: V+ — H is the restriction of T' to V1 and |- is the norm on
B(V+ H).

For a compact operator T' € B(H), we call the non-zero eigenvalues (1,(T))n>0
of |T'| := (T*T)"/?, arragned in decreasing order and repeated according to
multiplicity, the characteristic values of T. Note that p,(T") converges to 0 as
n — oo. We have that for all n € INg

pn(T) =inf{||T— S| | S € B(H) : dimran S < n}

4.1
= inf{||T|y.|| | V € H subspace,dim V = n} (4.1)

and in particular po(7") = ||T||.
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In view of [Remark 4.1 compact operators are considered as “infinitesimals”
in our “quantised calculus”; their “size” is measured by the rate of decay of
their sequence of characteristic values.

Definition 4.2: Let 7" € K(#H) and o > 0 be given. We say that 7" is an
infinitesimal of order o, if p,(T) = O(n™®) as n — oo, i.e., if there is a
constant C' < oo such that for all n € IN it holds u,,(T") < Cn~*. For a > 0, we
denote by I,(H) the set of all T' € K () which are infinitesimals of order a.

Remark 4.3: Recall (Theorem 9.5 from the Functional Analysis I lecture notes)
that K (H) is a norm-closed two-sided ideal in B(#). It follows from [Eq. (4.1)|
that for all T € K(H) and S € B(H)

in(TS) < |Sln(T) and i (ST) < |Sn(T)
and that for Ty, Ty € K(H)

:un+m(T1 + T2) S Mn(Tl) + Mm(TQ)a

thus each I,(H) forms a (non-closed) two-sided ideal in B(H). Furthermore,
we have for Ty, Ty € K(H) that

P (T1T2) < gt (T1) o (T2)

which implies the following rule for infinitesimals: If 77 is of order «; and T3 is
of order am, then T7T5 is of order o + .

We want to find an “integral” that is defined on [;(#H) and neglects all
infinitesimals of order o > 1.

Remark 4.4: Anoperator T' € B(H) is said to be in trace class, if >3 (| T|&k, Ex)
is finite for some (and in turn for each) orthonormal basis (&)renw, of H. In
this case, the sum Y32 (7€, &) is absolutely convergent and its value Tr(T)
is indepentend of the choice of the orthonormal basis (&)ren, of H; we call
Tr(T') the trace of T

The set £ (H) of all trace class operators on H forms a (non-closed) two-
sided ideal in B(H). However, .£*(#) is a Banach space with respect to the
norm ||T||; := Tr(|T|). Note that L (H) C K(H). If T € L' (H) is positive,
then

Ti(T) = fjo 11 (T). (4.2)

Thus, Tr: £ (H) — C is not appropriate for our purpose, because:
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e [;(H) is not a subset of Z1*)(H), so that Tr is not defined on all
infinitesimals of order 1.

e Tr does not vanish even on finite rank operators, but those belong to
I,(H) for every a > 1.

Definition 4.5: For 7' € K(#), we define for each N € N

ox(T) —z in(T) and (7)) = IO;NUN@»

Remark 4.6: Note that oy (7) is a partial sum in [Eq. (4.2)l For T' € I,(H),
we find constants C, C’ < oo such that for all N € IN

N-1 C
on(T) = ||T| + Z " < C'log(N).

n=1

Consequently, (Yy(T))ven is a bounded sequence. Thus I, (H) C L) (H),
where
p(1,00) . {T e K(H) ‘ 1 T|| 1,00y == sup Y (T) < oo}
NeN

is the Dizmier ideal. Note that Z(H) C L1 (H).

Proposition 4.7: Consider operators Ty, Ty € K(H). For all N € IN, we have
that

on(Th +T3) < on(Th) + on(Th)
and if Ty, Ty are positive, we have in addition that
UQN(Tl + Tg) 2 O'N(Tl) + O’N(Tz).

It follows that for any positive Ty, Ty € K(H)

log 2
N (T + 1) < An(Th) + v (To) < yon(Ty + 1) (1 + loggN> .

Proof: Exercise! O

Theorem 4.8 (Dixmier traces): Let w: (*(IN,R) — R be a linear map such
that

(i) w((an)nven) =0 if ay >0 for all N € N,
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(i) w((an)nven) = limy o an, if (an)neN 1S convergent,

(111) w((OéQN)Ne]N) = w((aN)NE]N) fO?“ each (aN)NEN € goo(]NJR)D

Then, Try: L)/ (H, — [0,00) for all X >0, T, Ty, Tp € ffrl’oo) satisfies the
conditions

Tr, (1) + Ts) = Tr,(17) + Try, (1), Tr,(A\T) = A Tr,(T)

and extends uniquely to a positive linear map Tr,,: L1 (H) — C, which for
all S € B(H), T € LYV (H) and U € LY (H) C LIN(H) satisfies

Tr,(ST) = Tr,(T'S) (4.3)
and
Tr, (U) = 0. (4.4)
Note that Upsq I.(H) C LY (H). We call Tr,, a Dixmier trace.
Proof: For every T € 2 (H),, (yn(T))nen is bounded (see Remark 4.6);

hence, Tr,(T) is well-defined and clearly Tr,(7") > 0 by (i). For T}, Ts €
L) (H) ., it follows from Proposition 4.7 and property (i) of w that

TI'w(Tl + Tg) < Tl"w (Tl) + TTM(T2>

< w((va(Tl + TQ)Ne]N) +w ((fg)gg((;)) Yon (11 + T2)>N€IN> :

By property (ii) of w, we get that

? (( OBR) (T + TQ) ) ~ tim L (1 + 1) =0

log(NV) ~ Nooolog(N)
since Yon (T} + T») is bounded and property (iii) yields that

W((%N(Tl + T2)N€]N> = ww((%\/(ﬂ + T2)N61N) = Tr, (Th + T3).

In summary, we get that Tr, (7} + T5) = Tr,(71) + Tr,,(73). That for all A > 0
and T € Z1°°)(H), it holds Tr,,(AT) = A Tr,,(T) is clear since w is linear and
YN(AT) = Myn(T) for each N € IN.

The extension of Tr,, to £1>)(H) uses that

IThis condition is called the scale invariance.
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e cach T € Z1>)(H) can be written uniquely as T = R(T) +i3(T) with
selfadjoint R(T), I(T) € LL=)(H);

e cach T = T* € L1>)(H) can be written as T = P,|T|P, — P_|T|P_ for
projections Py, P_ € vN(T) satisfying P, — P_ = 1 (using the measurable
functional calculus ®: By, (Sp(T')) — vN(T') from Remark 6.12 (iv), Functional
Analysis II, with P, = (f(x[07m)) and P_ = (f(x(,oo,o)), where P,|T|Py,
P_|T|P. € Z0®)(H), due to Remark 4.3 since |T| € L1 (H),.

Let U € B(H) be unitary. To prove [Eq. (4.3)] we note first that
implies for n € Ny and for all T € K(H) that u,(UTU*) = p,,(T), which yields

by definition for N € IN that for all 7" € K(H) it holds yw(UTU*) = yn(T)
and hence it holds for all T' € .£1°°)(H) that Tr, (UTU*) = Tr,,(T). Because
L120)(H) is a two-sided ideal, this is equivalent to the statement that for all
T € L1)(H) it holds Tr,(UT) = Tr,(TU).

Since every S € B(H) is a linear combination of (in fact four) unitaries (see
the proof of Lemma 6.13 in the Functional Analysis II lecture notes), the latter
yields [Eq. (4.3)]

To verify [Eq. (4.4), we take T' € Z'(H) and without loss of generality, we
may assume that 7" > 0. Note that (ox(T))nen is bounded by ||T||; due to

Eq. (4.2)] thus yv(T') — 0 as N — oo, so that by property (iii) we have

Tro(T) = w((3(T))new) = lim v (T) = 0.

Note that I,(H) C L1 (H) for all @ > 1, since for each T € I,(H), we find
C < oo such that

T =" pn(T) < ||IT|| +C > n* < o0. -
n=0 n=1

Definition 4.9: Let 7' € £1:>)(H). We say that T is measurable of the value
of Tr,(T) is independent of w; we denote this common value by f 7" and call it
the noncommutative integral of T'. Moreover, we put

M(H) = {T € L) (H) | T measurable}.

Remark 4.10: (i) The existence of (in fact infinitely many) linear maps
w: (*(N,R) — R satisfying the conditions (i), (ii) and (iii) in
was proved by Dixmier in 1966: With the construction of Tr,, he proved the
existence of singular traces on B(H) (i.e., traces that vanish on Z'(H)) and
settled to the negative the question of the uniqueness of the trace on B(H).

35



Chapter 4. The Riemann-Lebesgue measure in noncommutative geometry

(ii) An alternative approach was developed by Connes. It relies on the
(piecewise linear) interpolation of (on(T))nen given by

ox(T) :=inf{||R|l; + A||S|| | R€ L*(H),S€ K(H): T =R+ S}
for each A > 0. For T € £ (H) and any a > e,

O',\(T)
log(A)

is a continuous and bounded function, its Cesaro mean with respect to the
Haar measure 2% on the multiplicative group (0, 00) is for each A € [0, 00) given

» 1 A du
()= s [ 2

and defines a function A — 7,(7) in Cy([a, 00)). For T € L1 (H) ., let 7(T)
be the class of A — 7,(T’) in the quotient C*-algebra B := Cj([a, 00))/Co([0, 00)).
One can show that 7: Z1>)(H), — B extends to a positive linear map
7: L0 (H) — B with the property that for each S € B(H) and for each
T € ) (H) it holds 7(ST) = #(TS).

For every state w on B, one defines Tr,,: .Z1>)(H) — C by

v: la,00) — R, A —

Tr,(T) = w(7(T))

for all T € (1) (H), this map Tr,, then satisfies [Eq. (4.3)|and [Eq. (4.4)|in
Theorem 4.8, Moreover, we have that 7' € £(1°)(H) is measurable if and only

if limy o 72 (7") exists, in which case

][T = lim (7).

A—00

Note that exhibiting a state w on the (non-separable) C*-algebra requires the
axiom of choice.

(iii) M(H) is a vector space and satisfies ST'S™' € M(#H) for all invertible
S € B(H) and T € M(H). Moreover, one can check that M(H) C M(H).

(iv) With the help of real interpolation theory, one can construct out of
LY H) € K(H) a family £®9(H) with 1 < p < oo and 1 < ¢ < oo of two-
sided ideals in B(H). In fact, Z®9(H) for ¢ < co consists of those T' € K (H)
which satisfy

S NG (T < o,
N=1
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while .2 (H) consists of those T' € K(H) for which

| T|| (p,00) 7= sUp NéflaN(T) < 00;
NeN

it follows that £®°)(H) = I,,,(H) for each p > 1. On the diagonal, one finds
the Schatten-ideals £P(H) = £ PP (H), where the interpolation norm ||| ()
on ZPP)(H) is equivalent to the Schatten-p-norm

Tl := Te(|T )7

for T € £P(H). A noncommutative integration theory for which .£?(H) serves
as a analoge of the LP-space in Lebesgue integration theory, was developed by
Segal in the fifties.

Definition 4.11: Let (A, H, D) be a spetrac triple. We say that (A, H, D) is
(i) p-summable if (1 +D?*) "% € LP(H),
(ii) (p, 00)-summable if (1 +D?)~1/2 € LP)(H),
(iii) 0-summable if e7'P* € LY (H).
Example 4.12: Consider the spectral triple (A, H, D) from Example 1.2, where
A= C>(T,C), H = L*(T,m) and D was the closure of
Do: H D domDy — H, g— =g

with domain dom Dy := C'(T). Then the operator A := D? has spectrum
Sp(A) = {|n]* | n € Z}. We conclude that (1 + A)~Y/2 ¢ L1®)(H), ie.,
the spectral triple (A, H, D) is (1, 00)-summable. Indeed, since the Fourier
transform F: L*(T,m) — (*(Z) is a unitary and FDF ' = M, _,, where
M,, for any sequence A = (A, )nez of complex numbers, is the closed operator

M)\: éQ(Z) 2 dom M/\ — EQ(Z% (an)nEZ L ()‘nan)nGZ

with domain dom M), := {(a,)nez € (*(Z) | (A@p)nez € *(Z)} we conclude
that

FAF ™ = Miupy, sy FOLHA)VEF = Mgy, € B(A(Z))
and finally (14 A)~Y2 € £1°)(H); in fact, we have

~1/2 _ (1L L 1 !
(M"((1+A> )>n€]No_ (1’\/57\/57”"\/1+n27\/1+n2"”>’

so that vy ((1 4+ A)™"/2) = 2 as N — oo and hence even (1 +A)~Y/2 € M(H)
with f(1+A)~Y2=2.

37



Chapter 4. The Riemann-Lebesgue measure in noncommutative geometry

Example 4.13: In the situation of [Example 4.12] let P € B(H) be the orthogo-
nal projection onto kerD = C1 C L*(T,m). By Exercise 1B-1, (A, H, D) with
D= Dp =D + P gives another spectral triple. Note that A=D*=A+P,
so that A becomes invertible. We have A~1/2 ¢ 21 (H) since

- 11
(AT, :(111......)
(M ( )) €Ng ) L 72727 ’TL,’N,’

and thus 75 (A~Y2) = 2 as N — oo; in fact, we have A=1/2 € M(H) and
FA-12_y

More generally, for f € A= C*®(T,C), we have fA~1/2 € Z1:) (1) because
[ L*(T,m) — L*(T,m), g — fg is bounded and £1)(H) is a two-sided
ideal in B(H). It is a consequence of Connes trace theorem that f - A=1/2 is

measureable and .
Froae— [ fam, )
T

The general version of Connes trace theorem (1988) is about pseudodifferential
operators on compact Riemannian manifolds. This theory has its origins in the
work of Kohn, Nirenberg, Hormander and others in the sixties.

Definition 4.14: Let M be a compact smooth manifold of dimension n and let
g E — M be a k-dimensional smooth vector bundle.

(i) A differential operator of order m is a linear operator

P: (M, E) — (M, E)

which, in local coordinates x = (xy,...,x,) of M, is of the form
o™ oo
P= Z Au( \al .
e 895?1 8xg"
where a = (aq, ..., q,) is a multi-index with entries 0 < oy, ..., 0, <n

and cardinality |a| := }7_; ay, the A, € My(C*(M)) for each |a| <m

with A, # 0 for some multiindex a with |a| = n.

(ii) For & € Ty M, written as § = >°7_, §; dx;, we define the complete symbol
of P (as the polynomial in &, .., &, given) by pF (z,€) i= 7o pE (x, ),

where
py(z,8) = > Aal =y Au(z)E &

laf=d laf=d
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The principal symbol of P is defined as
O'P(:L“,f) . pi(I,f) = Z Aa(x)ga'

|a|=d

It induces a linear map o' (§): E, — E, for each £ € T) M.

(iii) We say that the differential operator P is elliptic if its principal symbol
ol (¢): E, — E, is invertible for each z € M and any £ € T:M — {0}.

(iv) For a local section u of E, one can write

(Pu)(z) = (273)”/2 / ) e CpP (2, )a(€) & - - - d&, (4.6)

with the Fourier transform @ of u which is given by
1 .
u(§) = (2 /n e &y (z) day - - - day, .

A linear operator P: I'(M, E) — I'( M, E) is called pseudodifferential
operator of order m, written P € U™ (M, E), if Eq 4.6 holds locally for a
matrix-valued function p? in the symbol class Sym™ (M, E), i.e., in local
coordinates, a matrix of smooth functions whose derivatives satisfy the
growth conditions

10200 pi (2, €)] < Cap(1 + €)™ 41
The principal symbol of P is then defined as
o = [p"] € Sym™ (M, E)/Sym™ (M, E).

(v) Suppose that g is a Riemannian metric on M. The Wodzicki residue of
P e U™"(M, E) is defined by

1
Resw (P) = 2n) /s*/vt tro’ (z, &)we A dz,

where S*M = {(2,§) € ThM | (-,-)rsm = 1} is the co-sphere bundle
over M, tr is the matrix trace, dxr := dx1 A --- A dx,, and

n

we =Y (1) TNEdE A NdE N NdE,

j=1

Theorem 4.15 (Connes’ trace theorem, 1988): Let (M, g) be a compact Rie-
mannian manifold of dimension n. For P € W""(M, E) with a complez vector
bundle E over M, the following statements hold:
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(i) P extends to a bounded linear operator on the Hilbert space L?*(M, E),
which is obtained by completion of T'(M, E) with respect to the inner
product given by

(uy,ug) = /M us(x)*uy (x) dvol(x) .

Moreover, P € L) (L*(M, E).

Exercises

Exercise 4.1: Let H be an infinite dimensional separable complex Hilbert space.
(i) Let T € K(H) and N € IN be given. Prove the formula
on(T) = inf {| R+ N||S|| | R e £'(M),S € K(H): T = R+ S}
for the value on(7") that was defined in Definition 4.5 of the lecture.
(ii) Like in Remark 4.10 (ii), we define for every T' € K(H) and each A > 0
(1) = inf {| Rl + M| S| | R e £"(H),S € K(H): T = R+S}.

Due to (i), this interpolates the values o (7"). Show that this interpolation
is in fact piecewise linear, i.e., prove that o) (7") = A||T’|| holds for every
A € [0,1) and that

oniA(T) = (1 = Non(T) + Aoy (T)
holds for each N € IN and every A € [0,1).

Exercise 4.2: Let (Ay,H1,D;) and (Ay, Ho, Ds) be spectral triples with infinite
dimensional separable complex Hilbert spaces Hi, Hs and suppose that the
operator I'1 € B(H;) is a grading on (A, H1,D;). Put

A=A ®¢ A, H:=H, Q¢ Ha, and D :=D; ®idy, +I'1 ® Ds.

Prove the following assertions:

(i) (A, H,D) is a spectral triple.

(i) (A, H,D) is -summabld’ whenever at least one of the spectral triples
(A1, H1, D) and (As, Ha, Dy) is f-summable.

2Recall from Definition 4.11 that a spectral triple (A, H, D) is said to be 0-summable if
e D" ¢ LL(H) for each t > 0.
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Exercise 4.3: Consider the Fourier transform F: S(R") — S(R™) on the
Schwartz space S(R™). Prove the following properties:

(i) For each v € S(R™) and each multi-index a = (ay,...,a,) € N, we
have that 0%(Fu) = (—1)!*F(mau), where m, denotes the function

Qn
n -

me: R" — C, (X1, @) —r 2t
(ii) For each u € S(R") and each multi-index a € INj, we have that
F(0°u) = il®myFu.

Exercise 4.4: Let @ # 2 C R" be open. Consider a differential operator
P: C*(2) — C*(2) which is of the form

P= 3 an(-i)0"

laj<m

for some integer m > 0 and with coefficients a, € C*°(Q2) for each |a| < m.
Let
P QxR — R, (x,&) —> Z &
|a|<m
be the complete symbol of P. Prove that for each u € S(R") and every point

r e R"” .
(Pulo)(@) = Gy [ " (@ )al) X" (6).
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Appendix A.

Basics of unbounded operators

Let (H1,(-,-)) and (Ha, (-, -)2) be complex Hilbert spaces; the norms induced
by the inner product are denoted by || - ||; and | - ||2, respectively.

I. The notion of unbounded linear operators
By an unbounded (linear) operator from Hj to Hy, we mean a linear map

T:H, ODOdomT — H,

that is defined on a linear subspace dom T of H, called the domain of T. We
say that T"is densely defined if dom T is dense in H, i.e., if clj., (dom T') = H;.
The graph of T, which we will denote by G(T), is defined as

G(T) ={(z,Tr) € H1 Xx Ha | v € dom T'}.

It is thus linear subspace of the Hilbert space H; @ Hs with the inner product
given by

((z1,91), (2, 92)) = (@1, T2)1 + (Y1, Y2)2 for (z1,41), (72,92) € H1 & Ha.
Lemma A.1: A linear subspace G C Hi1®DHs is the graph of an unbounded linear
operator (i.e., there is an unbounded linear operator T': Hy 2O domT — Hy
such that G = G(T)) if and only if GN ({0} x Ha) = {(0,0)}.

II. Closed and closable operators

Let T: Hy © domT — H, be an unbounded operator from H; to Ho.
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III. The adjoint operator

An unbounded operator S: H; O dom S — H, is called an extension of T,
written as S C T, if G(T') C G(S) holds, i.e., if domT C dom S and Sz =Tz
for every x € domT'.

We say that the unbounded operator 7' is

e closed, if G(T) is closed in ‘H; @ Ho; explicitly, this means that for every
sequence (T, )nen in dom 7" which converges in H; to a point x € H; and for
which (T'z,)nen is convergent in Hs to a point y € Ha, it holds true that
x€domT and y = T'x.

e closable, if T' admits an extension S that is closed.
Theorem A.2: For an unbounded operator T : Hy O domT" — Hs, the follow-
ing statements are equivalent:

(i) T is closable;

(ii) For every sequence (xy,)new in dom T which converges to 0 in Hy and for
which (Tx,)nen converges in Hay to a point y € Ho, we necessarily have
that y = 0;

(iii) cl(G(T)) N ({0} x Hz) ={(0,0)}.

It is worthwhile to take a closer look on the proof that (iii) implies (i). It
follows from Lemma that if (iii) holds, then cl(G(7")) must be the graph
of an unbounded linear operator, say 7: H; O domT — H,. The operator
T is thus a closed extension of T’ in fact, it is the (unique) minimal closed
extension (i.e., for every other closed operator S that satisfies 7' C S, it follows
that T C S), called the closure of T. Furthermore, its domain dom T is the

closure of dom T with respect to the graph norm || - ||z which is defined by
|z||% = ||z||? + || Tz||3 for each x € dom T.

II1I. The adjoint operator

Let now T': H, O dom T — Hs be a densely defined unbounded linear operator.
For every y € H,, we introduce a linear functional

¢y: domT — C, z— (T, y)s.
Using this notation, we may define

dom T :={y € Hs | ¢, is continuous on dom 7" with respect to | - |1},
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which is clearly a subspace of H,. Since dom T is dense in H,, ¢, for every
y € dom T™ extends uniquely to a bounded linear functional ®, on H,; by the
Riesz representation theorem, the latter must be of the form ®,(z) = (x, T*y):
for all x € H; with a unique vector T*y € H;. The assignment y +— T™y is in
fact linear on dom 7™, so that this construction results in an unbounded linear
operator

T: Hy O domT* — H;,

called the adjoint of T

Theorem A.3: Let T: Hi O domT — Hs be a densely defined unbounded
linear operator.

(i) The adjoint operator T* is always closed.

(ii) If T is closed, then T* is densely defined and the operator T** := (T*)*
satisfies T** =T

(iii) The operator T is closable if and only if its adjoint T* is densely defined;
in this case, we have that T** =T.

IV. Symmetric and selfadjoint operators

Throughout the following, let (#, (-,-)) be a complex Hilbert space. A densely
defined operator 7': H O dom T — H is called

o symmetric, if T C T*, or in other words, if (T'xy,x9) = (x1,Tzo) for all
T1,xo € H.
e selfadjoint, if T' = T*.

o maximally symmetric, if T is symmetric and if the following holds: when-
ever S is a symmetric extension of 7T, it follows that S =T

o essentially selfadjoint, if T is symmetric with selfadjoint closure T
Lemma A.4:

(i) Every symmetric operator is closable.
(ii) Ewvery selfadjont operator is maximally symmetric.

(iii) A densely defined operator T : H 2O domT — H is essentially selfadjoint
if and only if T = T*.
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V. Resolvent set and spectrum

Suppose that T is a densely defined and symmetric operator. The defect
indices ny. (T') € [0, 00] of T are defined by

no(T) := dim(T + i) = dim ker(T™* — 1)
and n_(T) :=dim(T —i)* = dimker(T* 4 1).

Theorem A.5: Let T: H O domT — H be densely defined and symmetric.
Then the following statements are equivalent:

(i) T is essentially selfadjoint;
(il) ny(T) =n_(T) = 0;

(iii) ran(T +14) and ran(T — i) are dense.

Suppose in addition that T is closed. Then the following statements are equiva-
lent:

(i) T is selfadjoint;
(i) n (T) = n_(T) = 0;
(iii) ran(T +1i) =ran(T — i) = H.
For closed operators, we actually have the following.

Theorem A.6: Let T': H O domT — H be densely defined, closed, and sym-
metric. Then we have the following:

(i) T is selfadjoint if and only if ny(T) =n_(T) = 0.
(ii) T is mazximally symmetric if and only if n, (T) =0 orn_(T) = 0.
(iii) T has a selfadjoint extension if and only if ny (T) = n_(T).

V. Resolvent set and spectrum

For any densely defined unbounded linear operator T: H O domT — H, we
define its resolvent set p(T') by

p(T) = {\€C|(T'=A1): domT — H is bijective and (T — A\1)™" € B(H)}
and its spectrum o(T) by o(T) := C — p(T).

Lemma A.7: Suppose that T: H O dom T — H is densely defined and closed.
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(i) If (T — A\1): domT — H is bijective for a X\ € C, then its inverse
(T — A1)t is bounded.

(ii) The spectrum o(T) C C is closed.
(iii) If T is selfadjoint, then o(T) C R.
(iv) If T is symmetric and satisfies o(T) C R, then T is selfadjoint.

VI. The spectral theorem and functional calculus

Theorem A.8: Let T: H O domT — H be selfadjoint. Then there is a unique
spectral measure E such that

(Tx,y) = / Ad(E(N)zx,y) for all x € domT, y € H.
R

If h: R — R is measurable, then

(D)) = [ O UEG.y)
R
defines a selfadjoint operator h(T): H 2 dom h(T') — H with domain

dom h(T) := {1‘ €U ’ /R|h()\)]2d<E()\)x,x> < oo}.
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Appendix B.

Basics on Fourier transform

We recall some basic facts about the Fourier transform on R™ which can be
used for the solution of the exercises without proof.

(i) Let A" be the Lebesgue measure on R". For every function v € L'(R", \"),
we define its Fourier transform 4 = Fu by
1

(Fu)(§) = ()2 /]R" e &y (x) AN (2) for each £ € R",

where (-, -) denotes the standard inner product on R", i.e., (§,7) = 3°7_, §;; for
eachz = (z1,...,2,) and & = (&1, ..., &,) in R™. It is known that F f € Co(R™).

(ii) Let S(R™) be the Schwartz space, i.e., the space of all smooth functions
f: R™ — C satisfying

sup (1 4 [z[™)|(9°f)(x)] < oo

zeR"?

for each m € Ny and each multi-index o = (ay,...,a,) € Nj. The Fourier
transform F, if restricted to S(R™), has the remarkable property that it induces
a bijection F: S(R™) — S(R™), with inverse given by

1
(271')”/2

(F'0)(x) = / S0 y(e) dN(€)  for each x € R™.
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Appendix C.

Solutions to the exercises

Solution (to [Exercise 1.1): According to [Definition 1.1} we have to check that
(i) Dy is selfadjoint,
(ii) Dy has compact resolvent,
(iii) For all a € A, w(a) dom Dy is contained in Dy and [Dy, m(a)] is bounded
on H.

Ad (i): This is a general fact: If T: H O domT — H and S € B(H),
(T'+ S)* = T* + S*. In particular, if " and S are selfadjoint, then 7'+ S is
also selfadjoint.

To see this, note that

dom(T+ S ={yeH |z~ (T+ S)z,y) = (Tz,y) + (Sz,y) is bounded}
={yeH|x— (Tz,y) is bounded}
=dom T

since x +— (Sz,y) is bounded for every y € H. Thus, for all z € dom T and for
all y € domT™ it holds

(Tw,y) + (S, y) = (T + S)a,y) = (2, (T + 5)y) = (z, (T + 5%)y),
ie, (T'+9) =T+ 5"
Ad (ii): Take any A € C — o(Dy ), choose A\; € C — (D) and Ay := X — \;.
Then

(Dy = A)~H = (D= n1) ™
= (D= M) 7H((D = A1) = (Dy = A)(Dy — AL
= —(D =M1V = M1)(Dy — A1),
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i.e., we have
(Dy =AD"= (D - M1 1= (V=X1)(Dy — A1),

where (D — A\;1)7! is compact and (1 — (V — A\y1)(Dy — A1)7!) is bounded,
which yields that (Dy — A1)~! is compact (recall that K(H) is a two-sided
ideal in B(H)).
Ad (iii): For all a € A, n(a)domDy C domDy, as domDy = domD.
Furthermore,
[Dy,m(a)] = [D,7(a)] + [V, m(a)],

where [V, 7(a)] € B(H), extends to a bounded operator on H.

Solution (to [Exercise 2.1): (i) First we want to show, that
{0jlao |1 < j <n}

is R-linearly independent. Let therefore o, ..., o € R with 37| 0/ 9;l4, = 0
in T, R™. Then, for each [f],, € C2(R), it holds

O—Za(ﬂwo flzo) :Z 8

(L']
For 1 <i <n, we apply this to the equivalence classes [f;] of the functions
fi: R" — R, (z',. .., 2" — 2" — ),
which gives 0 = 37, af 22 (z) = o, as desired.
For {0;]4, | 1 < j < n} to be a basis of T,,R", we need to show that indeed
Lin{0j|s, | 1 <j <n} =T, R". To see this, we first need a technical result.
For every open set U C R™ and each smooth function f: U — R, we find by

Taylor’s theorem on every open ball B(zg, ) C U with r > 0 a smooth function
@: B(xg,7) — R such that for all x € B(zg,r) we have

f(x) = f(xo) + ((grad f)(wo), 2 — @0) + (),

where p(z)/(x — x9) — 0 for © — x. In fact, we can give such a function ¢
explicitly: For all z € B(xg,r) we put

o(z) = {g(a),x — z0) zg
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where g = (g*,...,9"): B(zo,7) — R" is given by

#0)= [ |2 o sta—ao) = o) .

Note that each ¢, 1 < j < n, is smooth with ¢’(zq) = 0.
For any 0 € T,,R", any representative f of the class [f],, in Cg°(R) and the
corresponding smooth function ¢ defined as above we thus find

) =5 Sl ) = 3 (807120 5(0) + P o)i([ L)) = 0

J=1 J=1

and hence
= 3 14 1oL () € Linf ey 1< 5 < ),

since §([fj]z) € R for 1 < j < n, as we wanted to show.

(ii) Note that we have an isomorphism

¢Z zo * zo (M) — O;f(rg)aan)a [f]:vo — [f © sz'_l]%(xo)
and thus an isomorphism
qﬁl w0 Loy R" — Ty M, d—>00®; .

Take the isomorphism from (i), i.e., the map

Vyi(wo): R — Ty (w) R”, (vl, N T e Zvjaj
j=

wi(z0)

this yields an isomorphism O, ,, := Qgi,zo © Yypi(ao): R" — Ty M, which at
v=(v',...,v") € R" and [f],, € C2(M) looks as

Ouas ) = G (3P0 1)
(Zv 0,
= (; v! 0

which is the given assertion.

i ) @i (i)

n

i ) (17 0 o) = 32O 0 576 o0
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Solution: (i) We define

=l E;={(z,f) |z € X, f € E}}, ™ B — X, (z, f) — .

zeX

Let A = {(U;, ;) | i € I} be a maximal bundle atlas for the bundle 7: £ — X,
with local trivialisation 7;: 7= (U;) — U; x K". By definition, for each x € U;
the map 7|g, : B, — {x} x K" is an isomorphism, thus

(7ilg,)": (K")" — Ej, g+ go(7ilg,)

is an isomorphism as well. Fixing an isomorphism ®: K" — (IK™)* allows us to

define 77: (7*)~1(U;) — U; x K" fibre-wise by

riles = ((nle) 0 @) B — K" = {a} x K".

Endowing E* with the topology, whose open sets are characterised by “W C E*
is open if and only if 7*(U; N W) C U; x K™ is open for every i € I” makes E*
a vector bundle with bundle atlas A* = {(U;, 1) | i € I}.

(ii) The transition maps o;; of E* are of the form

o;i(r,v) = (z,5;(x)v) V(z,v) e (U;NU;) x K"

Y ’Lj

with the transition matrices S;;: U;NU; — Gl,(K) that are determined at any
point x € U; NU; by

Le(S; () = 7} 1my o (7 ]m5) ™"
= ((TglEm)’ ®)~" o ((7il,) 0 @)
o ((7ile,) o (7jle,) ") 0 @
= &' o (Lg(5)i(2))) 0 Le- (L)
=07 o L. (Sj(2)") 0 @ = Lg(Sji(x) )
where S;;: U; N U; — Gl,(K) are the transition matrices for E, £ is the
standard basis of K™, £* is the dual basis to £ and we fix ® that satisfies
O(e;) =ef fori e {1,...,n}.
From the above calculation we conclude S;;(x) = Sj;(x)" = (Si;j(z)™")". In
particular, if F is smooth, then E* is smooth as well.
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