Assignments for the lecture on

Non-Commutative Distributions
Summer Term 2019

Assignment 2

Hand in on Friday, 03.05.19, before the lecture.

Exercise 1 (20 points).
Let (\mathcal{C}, φ) be a non-commutative probability space. Put

$$
\mathcal{A}:=M_{n}(\mathcal{C}), \quad \mathcal{B}:=M_{n}(\mathbb{C})
$$

and

$$
E:=\mathrm{id} \otimes \varphi: \mathcal{A} \rightarrow \mathcal{B} .
$$

i) Show that $(\mathcal{A}, \mathcal{B}, E)$ is an operator-valued probability space.
ii) Assume that (\mathcal{C}, φ) is a C^{*}-probability space. Show that $(\mathcal{A}, \mathcal{B}, E)$ is then an operatorvalued C^{*}-probability space.
iii) Show that in the C^{*}-case we also have: if φ is faithful, then E is also faithful. [Faithful means: $E\left(A^{*} A\right)=0$ implies that $A=0$.]
iv) Assume that φ is a trace, i.e., $\varphi(A B)=\varphi(B A)$ for all $A, B \in \mathcal{C}$. Does then also E have the tracial property? Give a proof or counter example!

Exercise $2(20$ points).
Let \mathcal{B} be a unital algebra. Consider a collection of functions $F=\left(F_{m}\right)_{m \in \mathbb{N}}$

$$
F_{m}: M_{m}(\mathcal{B}) \rightarrow M_{m}(\mathcal{B}), \quad z \mapsto F_{m}(z) .
$$

i) We say that F respects direct sums if

$$
F_{m_{1}+m_{2}}\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)=\left(\begin{array}{cc}
F_{m_{1}}\left(z_{1}\right) & 0 \\
0 & F_{m_{2}}\left(z_{2}\right)
\end{array}\right)
$$

for all $m_{1}, m_{2} \in \mathbb{N}, z_{1} \in M_{m_{1}}(\mathcal{B}), z_{2} \in M_{m_{2}}(\mathcal{B})$.
ii) We say that F respects similarities if

$$
F_{m}\left(S z S^{-1}\right)=S F_{m}(z) S^{-1}
$$

for all $m \in \mathbb{N}$ and all $S \in M_{m}(\mathbb{C})$ invertible.
iii) We say that F respects intertwininigs if for all $n, m \in \mathbb{N}, z_{1} \in M_{n}(\mathcal{B}), z_{2} \in M_{m}(\mathcal{B})$, $T \in M_{n, m}(\mathbb{C})$ (the latter are the $n \times m$ matrices with complex entries) we have the following:

$$
z_{1} T=T z_{2} \Longrightarrow F_{n}\left(z_{1}\right) T=T F_{m}\left(z_{2}\right)
$$

Prove that [(i) and (ii)] is equivalent to (iii).

