UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Prof. Dr. Roland Speicher M.Sc. Felix Leid

Assignments for the lecture on Non-Commutative Distributions Summer Term 2019

Assignment 4

Hand in on Friday, 24.05.19, before the lecture.

Let \mathcal{A} and \mathcal{B} be unital C^* -algebras. A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ is called *completely positive* if all matrix amplifications $\Phi \otimes \mathrm{id} : M_n(\mathcal{A}) \to M_n(\mathcal{B})$ are positive.

Exercise 1 (10 points). Show that the following are equivalent:

- i) $\Phi: \mathcal{A} \to \mathcal{B}$ is completely positive.
- ii) For each $n \in \mathbb{N}$ and all $a_1, \ldots, a_n \in \mathcal{A}$ the matrix $(\Phi(a_i a_i^*))_{i,j=1}^n \in M_n(\mathcal{B})$ is positive.

Exercise 2 (10 points).

Show that the transpose map on 2×2 matrices,

$$\Phi: M_2(\mathbb{C}) \to M_2(\mathbb{C}), \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix},$$

is positive, but not completely positive.

Exercise 3 (10 points).

Show that a positive conditional expectation $E : \mathcal{A} \to \mathcal{B}$ is completely positive. [Hint: For this you can use the following statement: A matrix $(b_{ij})_{i,j=1}^n \in M_n(\mathcal{B})$ is positive if and only if we have

$$\sum_{i,j=1}^{n} b_i b_{ij} b_j^* \ge 0 \qquad \text{for all } b_1, \dots, b_n \in \mathcal{B}.]$$

What does this tell us about the complete positivity of states $\varphi : \mathcal{A} \to \mathbb{C}$?

Exercise 4 (10 points).

- i) Let $(\mathcal{A}, \mathcal{B}, E)$ be a \mathcal{B} -valued C^* -probability space. Consider a "constant" selfadjoint random variable $b = b^* \in \mathcal{B} \subset \mathcal{A}$. Calculate the fully matricial Cauchy transform of b.
- ii) Consider a C^* -probability space (\mathcal{A}, φ) as a special case of an operator-valued C^* probability space, where $\mathcal{B} = \mathbb{C}$. Consider a selfadjoint $X = X^* \in \mathcal{A}$. Its distribution μ_X is then a probability measure on \mathbb{R} . Express the fully matricial \mathbb{C} -valued Cauchy transform G_X in terms of μ_X .