UNIVERSITÄT DES SAARLANDES
FACHRICHTUNG MATHEMATIK
Prof. Dr. Roland Speicher
M.Sc. Felix Leid

Assignments for the lecture on
Non-Commutative Distributions
Summer Term 2019

Assignment 8

Hand in on Friday, July 5th, 2019, before the lecture.

Exercise 1 (10 points).
Prove Proposition 7.2 from class: Let (\mathcal{A}, φ) be a C^{*}-probability space and $S_{1}, \ldots, S_{d} \in$ \mathcal{A} free standard semicirculars (i.e., $\varphi\left(S_{i}^{2}\right)=1$). For $n \geq 1$ and selfadjoint matrices $b_{1}, \ldots, b_{d} \in M_{n}(\mathbb{C})$ we consider

$$
S:=b_{1} \otimes S_{1}+\cdots+b_{d} \otimes S_{d} \in M_{n}(\mathcal{A})
$$

Then S is in the matrix-valued C^{*}-probability space $\left(M_{n}(\mathcal{A}), M_{n}(\mathbb{C})\right.$, id $\left.\otimes \varphi\right)$ a matrixvalued semicircular element with covariance $\eta: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ given by

$$
\eta(b)=\sum_{j=1}^{d} b_{j} b b_{j} .
$$

Exercise 2 (10 points).
Let $S_{i j}$ for $i \geq j$ be free standard semicircular elements, and put $S_{i j}=S_{j i}$. Furthermore, let $\alpha_{i j} \in \mathbb{R}$ with $\alpha_{i j}=\alpha_{j i}$ be given. Then we consider

$$
S:=\left(\alpha_{i j} S_{i j}\right)_{i, j=1}^{n} .
$$

From the previous exercise we know that this is an $M_{n}(\mathbb{C})$-valued semicircular element. Give, by relying on Theorem 7.4, a criterium to decide whether S is also a scalar-valued semicircular element. Use this to decide whether the following are scalar-valued semicircular elements (for S_{1}, \ldots, S_{6} free standard semicirculars):

$$
S=\left(\begin{array}{ccc}
3 S_{1} & 0 & 4 S_{2} \\
0 & 5 S_{3} & 0 \\
4 S_{2} & 0 & 3 S_{4}
\end{array}\right) \quad \text { or } \quad \tilde{S}=\left(\begin{array}{ccc}
3 S_{1} & 6 S_{5} & 4 S_{2} \\
6 S_{5} & 5 S_{3} & 6 S_{6} \\
4 S_{2} & 6 S_{6} & 3 S_{4}
\end{array}\right) .
$$

Exercise 3 (10 points).
Check your conclusion from the last exercise numerically by producing histograms, for $N=1000$ or higher, of the eigenvalues of the matrices

$$
X^{(3 N)}=\left(\begin{array}{ccc}
3 X_{1}^{(N)} & 0 & 4 X_{2}^{(N)} \\
0 & 5 X_{3}^{(N)} & 0 \\
4 X_{2}^{(N)} & 0 & 3 X_{4}^{(N)}
\end{array}\right) \quad \text { or } \quad \tilde{X}^{(3 N)}=\left(\begin{array}{ccc}
3 X_{1}^{(N)} & 6 X_{5}^{(N)} & 4 X_{2}^{(N)} \\
6 X_{5}^{(N)} & 5 X_{3}^{(N)} & 6 X_{6}^{(N)} \\
4 X_{2}^{(N)} & 6 X_{6}^{(N)} & 3 X_{4}^{(N)}
\end{array}\right),
$$

where $X_{1}^{(N)}, \ldots, X_{6}^{(N)}$ are independent $G U E(N)$ random matrices.

