## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Prof. Dr. Roland Speicher M.Sc. Felix Leid



Assignments for the lecture on Non-Commutative Distributions Summer Term 2019

## Assignment 9

Hand in on Friday, July 12th, 2019, before the lecture.

## Exercise 1 (10 points).

Write down the precise form of the recursion between moments and free cumulants from Proposition 9.7, and prove this by checking that the arguments from the scalar-valued case work also in the operator-valued situation.

Exercise 2 (10 points).

Write down explicitly the linearization for a monomial of degree k = 5, as given in the proof of Theorem 8.5 and check that this satisfies indeed all the requirements for a linearization.

**Exercise 3** (10 points). Find a linearization  $\hat{p}$  of the polynomial

$$p(x,y) = xy^2 + y^2x - y.$$

## **Bonus Questions:**

Exercise\* 4 (20 bonus points).

Calculate, via linearization and numerical calculation of the corresponding operatorvalued semicircular or of the corresponding operator-valued free convolution, the distribution of  $p(X, Y) = XY^2 + Y^2X - Y$ , where

- X and Y are free standard semicircular elements
- X and Y are free random variables, with

$$\mu_X = \frac{1}{2}(\delta_0 + \delta_1), \qquad \mu_Y = \frac{1}{2}(\delta_{-1} + \delta_1).$$

Exercise<sup>\*</sup> 5 (10 bonus points).

Realize X and Y, as given in Exercise 4, (asymptotically) via large  $N \times N$  random matrices  $X_N$  and  $Y_N$ , and produce histograms of the eigenvalue distribution of  $p(X_N, Y_N)$ . Compare the results with the calculations from Exercise 4.