UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Tobias Mai

Assignments for the lecture Potential Theory in the Complex Plane Summer term 2020

Assignment 2 B

for the tutorial on Monday, June 8 (!), 1:00 pm

·

Exercise 1. For $x_0 \in \mathbb{R}^N$ and r > 0, consider the Poisson kernel of $B(x_0, r)$, namely

$$K_{x_0,r}: B(x_0,r) \times \partial B(x_0,r) \longrightarrow \mathbb{R}, \quad K_{x_0,r}(x,y) = \frac{1}{N\omega_N r} \frac{r^2 - \|x - x_0\|^2}{\|x - y\|^N}.$$

Prove that for each fixed $y \in \partial B(x_0, r)$, the function

$$K_{x_0,r}(\cdot,y): B(x_0,r) \longrightarrow \mathbb{R}, \quad x \longmapsto K_{x_0,r}(x,y)$$

is harmonic on $B(x_0, r)$.

Hint: Write $K_{x_0,r}(\cdot,y)$ as the product of two smooth functions $u,v:B(x_0,r)\to\mathbb{R}$. Then, use the identity $\Delta(uv)=v\Delta u+u\Delta v+2\langle\operatorname{grad} u,\operatorname{grad} v\rangle$ in order to show that $\Delta K_{x_0,r}(\cdot,y)\equiv 0$.

Exercise 2. Let $\emptyset \neq \Omega \subseteq \mathbb{C}$ be an open subset and let $z_0 \in \Omega$ and r > 0 be given such that $\overline{D(z_0, r)} \subset \Omega$. Our goal is to deduce Poisson's integral formula from Cauchy's integral formula. We proceed as follows:

(i) Prove that every $f \in \mathcal{O}(\Omega)$ satisfies for all $z \in D(z_0, r)$

$$f(z) = \int_0^{2\pi} K_{z_0,r}(z, z_0 + re^{it}) f(z_0 + re^{it}) r dt.$$

Hint: For fixed $z \in D(z_0, r)$, put $w := z - z_0$ and verify that $F(\zeta) := \frac{r^2 - |w|^2}{r^2 - \zeta \overline{w}} f(z_0 + \zeta)$ defines a function which is holomorphic on a neighborhood of $\overline{D(0, r)}$. Show that the integral on the right hand side of the formula asserted in (i) can be rewritten as $\frac{1}{2\pi i} \int_{\gamma_0, r, \circlearrowleft} \frac{1}{\zeta - w} F(\zeta) d\zeta$ and apply Cauchy's integral formula.

(ii) Deduce from (i) that every $u \in H(\Omega)$ satisfies for all $z \in D(z_0, r)$

$$u(z) = \int_0^{2\pi} K_{z_0,r}(z, z_0 + re^{it}) u(z_0 + re^{it}) r dt.$$