Assignments for the lecture
Potential Theory in the Complex Plane
Summer term 2020

Assignment 4 A
for the tutorial on *Monday, July 6, 1:00 pm*

Exercise 1. Let \(\emptyset \neq \Omega_1, \Omega_2 \subseteq \mathbb{C} \) be open. Consider a function \(f \in \mathcal{O}(\Omega_1) \) with the property that \(f(\Omega_1) \subseteq \Omega_2 \) and a function \(s \in C^2(\Omega_2) \). Show that for each \(z \in \Omega_1 \)

\[
(\Delta(s \circ f))(z) = (\Delta s)(f(z)) |f'(z)|^2.
\]

Exercise 2. Let \(T \) be a compact topological space and let \(\emptyset \neq \Omega \subseteq \mathbb{R}^N \) be open. Suppose that \(f : \Omega \times T \to [-\infty, +\infty) \) is a function with the following properties:

- \(f \) is upper semicontinuous on \(\Omega \times T \);
- the function \(f(\cdot, t) : \Omega \to [-\infty, +\infty), \quad x \mapsto f(x, t) \)
 is subharmonic on \(\Omega \) for each \(t \in T \).

Prove that we obtain a well-defined subharmonic function \(s : \Omega \to [-\infty, +\infty) \) by

\[
s(x) := \sup_{t \in T} f(x, t) \quad \text{for } x \in \Omega.
\]