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Exercise 2 on Sheet 4 A provides the following permanence property of subharmoniticity.

Lemma 1. Let T be a compact topological space and let ∅ 6= Ω ⊆ RN be open. Suppose

that f : Ω× T → [−∞,+∞) is a function with the following properties:

� f is upper semicontinuous on Ω× T ;

� the function

f(·, t) : Ω −→ [−∞,+∞), x 7−→ f(x, t)

is subharmonic on Ω for each t ∈ T .

Then, we obtain a well-de�ned subharmonic function s : Ω→ [−∞,+∞) by

s(x) := sup
t∈T

f(x, t) for x ∈ Ω.

This criterion can be used to verify the following assertion which we have made in Example
5.6 (ii) of the lecture.

Lemma 2. For every open subset ∅ 6= Ω ( C, the function

s : Ω −→ R, z 7−→ − log(dist(z, ∂Ω))

is subharmonic.

Proof. The crucial observation which allows us to apply the criterion provided by Lemma
1 is that dist(z, ∂Ω) = infζ∈∂Ω |z − ζ| holds for every z ∈ Ω; hence, as the function
x 7→ − log(x) is strictly decreasing on (0,∞), we conclude that s(z) = supζ∈∂Ω f(z, t)
holds for all z ∈ Ω, where f : Ω × ∂Ω → R is de�ned by f(z, ζ) := − log |z − ζ|. The
function f is continuous on Ω × ∂Ω (in particular, upper semicontinuous) and f(·, ζ) is
harmonic (in particular, subharmonic) for every �xed ζ ∈ ∂Ω because it is locally given
as the real part of a holomorphic function (see Exercise 1, Assignment 1 B).
At this stage, however, we can apply Lemma 1 only if ∂Ω is compact, as this is required
by the criterion. In order to prove the assertion in full generality, we need to modify the



argument above. First of all, we notice that being subharmonic is a local property (see
Theorem 5.8); thus, it su�ces to check that s|D(z0,r) is subharmonic for every disc D(z0, r)

satisfying D(z0, r) ⊂ Ω. The idea is that this local version should allow us to neglect the
parts of ∂Ω which are su�ciently distant from D(z0, r); in other words, we want to �nd
a compact subset T of ∂Ω such that dist(z, ∂Ω) = dist(z, T ) holds for every z ∈ D(z0, r).
Once we have found such a set T , we can consider the function f : D(z0, r)×T → R de�ned
like above by f(z, ζ) := − log |z− ζ|, which then satis�es all conditions of Lemma 1; thus,
we deduce that z 7→ supζ∈T f(z, ζ) is subharmonic on D(z0.r). Since supζ∈T f(z, ζ) =
− log(dist(z, T )) = s(z) for all z ∈ D(z0, r), we conclude that s|D(z0,r) is subharmonic,
which proves the assertion.
Thus, it remains to construct the compact set T . For that purpose, we put R0 :=
dist(z0, ∂Ω) > 0 and choose any R > R0 + 2r. We claim that T := D(z0, R) ∩ ∂Ω
does the job.
This can be veri�ed in two steps. First, we notice that

dist(z, ∂Ω) ≤ R0 + r for all z ∈ D(z0, r). (1)

Indeed, by the triangle inequality, we see that for all z ∈ D(z0, r) and for every ζ ∈ ∂Ω

dist(z, ∂Ω) ≤ |ζ − z| ≤ |ζ − z0|+ |z − z0| < |ζ − z0|+ r.

Hence, by passing to the in�mum over all ζ ∈ ∂Ω, we infer from the latter that dist(z, ∂Ω) ≤
dist(z0, ∂Ω) + r ≤ R0 + r, which is the bound stated in (1).
With the help of (1), we can prove that dist(z, ∂Ω) = dist(z, T ) holds for every z ∈
D(z0, r). Let us �x z ∈ D(z0, r). Since T ⊆ ∂Ω, we obviously have that dist(z, ∂Ω) ≤
dist(z, T ). In order to prove the opposite inequality, we proceed as follows. Take any
ζ ∈ ∂Ω which satis�es |z − ζ| = dist(z, ∂Ω). The triangle inequality yields then that
|ζ − z0| ≤ |ζ − z| + |z − z0| ≤ dist(z, ∂Ω) + r. Using (1), we conclude that |ζ − z0| ≤
R0 + 2r < R, i.e., ζ ∈ T . Thus, dist(z, T ) ≤ |ζ − z| = dist(z, ∂Ω), as desired.


