UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK Dr. Tobias Mai

Assignments for the lecture Potential Theory in the Complex Plane Summer term 2020

Assignment 4 B for the tutorial on *Monday*, July 6, 1:00 pm

Exercise 1. Let $\emptyset \neq \Omega \subseteq \mathbb{R}^N$ be open and bounded with piecewise smooth boundary $\partial\Omega$. Suppose further that $\Omega_0 \subseteq \mathbb{R}^N$ is an open subset such that $\overline{\Omega} \subset \Omega_0$. Deduce from Gauss' divergence theorem (Theorem 3.4 in the lecture) that *Green's identity*

$$\int_{\Omega} \left(u(x)\Delta v(x) - v(x)\Delta u(x) \right) \mathrm{d}\lambda^{N}(x) = \int_{\partial\Omega} \left(u(x)D_{n}v(x) - v(x)D_{n}u(x) \right) \mathrm{d}\sigma_{\partial\Omega}(x)$$

holds for all $u, v \in C^2(\Omega_0)$, where $\sigma_{\partial\Omega}$ is the surface measure on $\partial\Omega$, $n : \partial\Omega \to \mathbb{R}^N$ are the outer unit normal vectors to the surface $\partial\Omega$, and D_n denotes the directional derivative in the direction n, i.e., $D_n u(x) := \langle \operatorname{grad} u(x), n(x) \rangle$.

Hint: Apply Gauss' divergence theorem to both $u \cdot \operatorname{grad} v$ and $v \cdot \operatorname{grad} u$.

Exercise 2. Let $\emptyset \neq K \subset \mathbb{C}$ be compact. For any given $2 \leq n \in \mathbb{N}$, we call

$$\delta_n(K) := \max_{(w_1, \dots, w_n) \in K^n} \prod_{1 \le i < j \le n} |w_i - w_j|^{\frac{2}{n(n-1)}}$$

the *n*-th diameter of K; an *n*-tuple $(w_1, \ldots, w_n) \in K^n$ for which the maximum is attained is called a *Fekete n*-tuple for K. A *Fekete polynomial for* K of degree n, for $2 \leq n \in \mathbb{N}$, is a polynomial q of the form

$$q(z) = \prod_{j=1}^{n} (z - w_j)$$

where $(w_1, \ldots, w_n) \in K^n$ is a Fekete *n*-tuple for K. Prove the following assertions:

- (i) The sequence $(\delta_n(K))_{n=2}^{\infty}$ is decreasing.
- (ii) If q is any Fekete polynomial for K of degree $n \ge 2$, then

$$||q||_K^{1/n} \le \delta_n(K)$$
 where $||q||_K := \max_{z \in K} |q(z)|.$