UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK Dr. Tobias Mai

Additional material for the lecture Potential Theory in the Complex Plane Summer term 2020

Remark 5.15. Subharmonic functions have some remarkable applications in functional analysis.

Let $(A, \|\cdot\|)$ be a unital complex Banach algebra. For $a \in A$, we define the *spectral radius* r(a) of a by

$$r(a) := \max\{|z| \mid z \in \sigma(a)\},\$$

where

$$\sigma(a) := \{ z \in \mathbb{C} \mid a - z \mathbf{1}_A \text{ not invertible in } A \}$$

is the *spectrum* of A; recall that we have the formula

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \inf_{n \in \mathbb{N}} \|a^n\|^{1/n}.$$

Vesentini's theorem says that, for every holomorphic function $f: \Omega \to A$ on an open set $\emptyset \neq \Omega \subseteq \mathbb{C}$,

$$s: \ \Omega \longrightarrow [-\infty, +\infty), \quad z \longmapsto \log r(f(z))$$

is subharmonic, provided that $s \not\equiv -\infty$ on each connected component of Ω .

Using this remarkable fact, one can prove Johnson's theorem which says that a surjective homomorphism $\theta: A_1 \to A_2$ between complex Banach algebras A_1 and A_2 is automatically continuous if A_2 is semisimple (i.e., the intersection of all maximal right ideals in A_2 is $\{0\}$).

Remark 6.5. Let $\rho : \mathbb{R}^N \to \mathbb{R}$ be in $C_c^k(\mathbb{R}^N) = C_c(\mathbb{R}^N) \cap C^k(\mathbb{R}^N)$ for some $k \ge 1$. It can be shown that

$$\Phi(x) := \int_{\mathbb{R}^N} U_y(x)\rho(y) \,\mathrm{d}\lambda^N(y) \qquad \text{for } x \in \mathbb{R}^N$$

defines a function $\Phi \in C^{k+1}(\mathbb{R}^N)$.

Further, Φ solves *Poisson's equation* $\Delta \Phi = -a_N \rho$ on \mathbb{R}^N . Indeed, by Theorem 6.2 (i), we have for all $f \in C_c^{\infty}(\mathbb{R}^N)$,

$$L_{\Phi}(f) = \int_{\mathbb{R}^N} f(x) \Delta \Phi(x) \, \mathrm{d}\lambda^N(x),$$

whereas, for the measures μ^{\pm} defined by $d\mu^{\pm}(y) := \rho^{\pm}(y) d\lambda^{N}(y)$, Theorem 6.4 (ii) yields that

$$L_{\Phi}(f) = L_{\Phi_{\mu^{+}}}(f) - L_{\Phi_{\mu^{-}}}(f)$$

= $-a_N \int_{\mathbb{R}^N} f(x) d\mu^+(x) + a_N \int_{\mathbb{R}^N} f(x) d\mu^-(x)$
= $-a_N \int_{\mathbb{R}^N} f(x)\rho(x) d\lambda^N(x),$

where the first step relies on the decomposition $\Phi = \Phi_{\mu^+} - \Phi_{\mu^-}$ which is valid thanks to $\rho = \rho^+ - \rho^-$. Hence, in summary, for all $f \in C_c^{\infty}(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} f(x) \left(\Delta \Phi(x) + a_N \rho(x) \right) d\lambda^N(x) = 0,$$

which implies $\Delta \Phi(x) = -a_N \rho(x)$ for all $x \in \mathbb{R}^N$.

In particular, for N = 3, since $a_3 = 4\pi$, we get $\Delta \Phi = -4\pi\rho$. In the notation of Chapter 1, we have grad $\Phi = -4\pi\varepsilon_0 \vec{E}$, so that the latter identity yields div $\vec{E} = \frac{1}{\varepsilon_0}\rho$, which is the differential form of Gauss' law.

Theorem 7.10.

- (i) For $E \subseteq \mathbb{C}$, we have $\operatorname{cap}(E) = 0$ if and only if E is polar.
- (ii) If $E_1 \subseteq E_2 \subseteq \mathbb{C}$, then $\operatorname{cap}(E_1) \leq \operatorname{cap}(E_2)$.
- (iii) If $E \subseteq \mathbb{C}$ and $\alpha, \beta \in \mathbb{C}$, then $\operatorname{cap}(\alpha E + \beta) = |\alpha| \operatorname{cap}(E)$.
- (iv) If $K \subset \mathbb{C}$ is compact, then $\operatorname{cap}(K) = \operatorname{cap}(\partial_e K)$.
- (v) For a compact set $K \subset \mathbb{C}$, we denote by $\Omega(K)$ the connected component of $(\mathbb{C} \cup \{\infty\}) \setminus K$ which contains ∞ .

If $K_1, K_2 \subset \mathbb{C}$ are compact and $f : \Omega(K_1) \to \Omega(K_2)$ is a meromorphic function satisfying f(z) = z + O(1) as $z \to \infty$, then $\operatorname{cap}(K_2) \leq \operatorname{cap}(K_1)$; if f is biholomorphic, then $\operatorname{cap}(K_2) = \operatorname{cap}(K_1)$.

(vi) If $K \subset \mathbb{C}$ is compact, then

$$\operatorname{cap}(K) \le \frac{1}{2}\operatorname{diam}(K)$$
 and $\operatorname{cap}(K) \ge \sqrt{\frac{1}{\pi}\lambda^2(K)},$

where diam(K) := max{ $|w_1 - w_2| | w_1, w_2 \in K$ } and λ^2 denotes the Lebesgue measure on \mathbb{C} .

(vii) If $K \subset \mathbb{C}$ is compact and $q(z) = \sum_{k=0}^{d} a_k z^k$ with $a_d \neq 0$ a complex polynomial, then

$$\operatorname{cap}(q^{-1}(K)) = \left(\frac{\operatorname{cap}(K)}{|a_d|}\right)^{1/d}$$

Theorem 7.11 (Fekete-Szegö). Let $K \subset \mathbb{C}$ be compact. Consider the sequence $(\delta_n(K))_{n=2}^{\infty}$ of diameters of K, which was defined in Exercise 4B-2. Then $(\delta_n(K))_{n=2}^{\infty}$ is convergent and the limit $\delta(K) := \lim_{n \to \infty} \delta_n(K)$ is given by $\delta(K) = \operatorname{cap}(K)$. *Proof.* From Exercise 4B-2 (i), we know that $(\delta_n(K))_{n=2}^{\infty}$ is decreasing; since $\delta_n(K) \ge 0$ for all $n \ge 2$, it follows that $(\delta_n(K))_{n=2}^{\infty}$ is convergent.

① Claim: For all $n \ge 2$, it holds that $\delta_n(K) \ge \operatorname{cap}(K)$. For $w_1, \ldots, w_n \in K$, we have by definition of $\delta_n(K)$ that

$$\frac{2}{n(n-1)}\sum_{1\leq i< j\leq n}\log|w_i - w_j| \leq \log\delta_n(K).$$

Hence, for every $\mu \in \mathcal{P}(K)$, we get by integration of the latter inequality with respect to the product measure μ^n over K^n

$$\frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \int_K \cdots \int_K \log |w_i - w_j| \, \mathrm{d}\mu(w_1) \cdots \mathrm{d}\mu(w_n) \le \log \delta_n(K).$$

Since for each of the $\frac{n(n-1)}{2}$ possible choices of indices $1 \leq i < j \leq n$

$$\int_{K} \cdots \int_{K} \log |w_i - w_j| \,\mathrm{d}\mu(w_1) \cdots \mathrm{d}\mu(w_n) = \int_{K} \int_{K} \log |w_i - w_j| \,\mathrm{d}\mu(w_i) \,\mathrm{d}\mu(w_j) = -I(\mu),$$

we infer from the latter that $e^{-I(\mu)} \leq \delta_n(K)$. Thus, if follows that

$$\operatorname{cap}(K) = \sup_{\mu \in \mathcal{P}(K)} e^{-I(\mu)} \le \delta_n(K),$$

as desired.

② Claim: For each $n \ge 2$, let $w^{(n)} = (w_1^{(n)}, \ldots, w_n^{(n)})$ be a Fekete *n*-tuple for K and define $\mu_n \in \mathcal{P}(K)$ by

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{w_i^{(n)}}.$$

Let $(\mu_{n_k})_{k=1}^{\infty}$ be a subsequence of $(\mu_n)_{n=1}^{\infty}$ which is weak*-convergent to some $\nu \in \mathcal{P}(K)$. Then $I(\nu) \leq -\log \delta(K)$.

For R > 0, we set $\log_R(x) := \min\{\log(x), R\}$. Then, by monotone convergence,

$$I(\nu) = \lim_{R \to \infty} \int_K \int_K \log_R \frac{1}{|z - w|} \,\mathrm{d}\nu(z) \,\mathrm{d}\nu(w)$$

and thus, since $(\mu_{n_k})_{k=1}^{\infty}$ is weak*-convergent to ν ,

$$I(\nu) = \lim_{R \to \infty} \lim_{k \to \infty} \int_K \int_K \log_R \frac{1}{|z - w|} \,\mathrm{d}\mu_{n_k}(z) \,\mathrm{d}\mu_{n_k}(w).$$

Next, we observe that

$$\begin{split} \int_{K} \int_{K} \log_{R} \frac{1}{|z - w|} \, \mathrm{d}\mu_{n_{k}}(z) \, \mathrm{d}\mu_{n_{k}}(w) &= \frac{1}{n_{k}^{2}} \sum_{i,j=1}^{n} \log_{R} \frac{1}{|w_{i}^{(n_{k})} - w_{j}^{(n_{k})}|} \\ &= \frac{2}{n_{k}^{2}} \sum_{1 \leq i < j \leq n}^{n} \log_{R} \frac{1}{|w_{i}^{(n_{k})} - w_{j}^{(n_{k})}|} + \frac{1}{n_{k}^{2}} n_{k} R \\ &\leq \frac{2}{n_{k}^{2}} \sum_{1 \leq i < j \leq n}^{n} \log \frac{1}{|w_{i}^{(n_{k})} - w_{j}^{(n_{k})}|} + \frac{R}{n_{k}} \\ &= -\frac{n_{k} - 1}{n_{k}} \log \delta_{n_{k}}(K) + \frac{R}{n_{k}}. \end{split}$$

Hence, we deduce that

$$I(\nu) \le \lim_{R \to \infty} \lim_{k \to \infty} \left(-\frac{n_k - 1}{n_k} \log \delta_{n_k}(K) + \frac{R}{n_k} \right) = -\log \delta(K),$$

as asserted.

3 Combining the results derived above, we obtain that

$$\operatorname{cap}(K) \stackrel{\scriptscriptstyle{(1)}}{\leq} \delta(K) \stackrel{\scriptscriptstyle{(2)}}{\leq} e^{-I(\nu)} \le \sup_{\mu \in \mathcal{P}(K)} e^{-I(\mu)} = \operatorname{cap}(K),$$

i.e., $\delta(K) = \operatorname{cap}(K)$, which proves the theorem.

Further, we see that ν must be an equilibrium measure for K. As there is a unique equilibrium measure ν_K for K in the case $\operatorname{cap}(K) > 0$, it follows from 2 that the sequence $(\mu_n)_{n=1}^{\infty}$ then has ν_K as its only limit point; therefore, $(\mu_n)_{n=1}^{\infty}$ itself must be weak*-convergent to ν_K .

Remark 8.4. We notice that the polynomials p_n defined in (8.2) satisfy for $j = 1, \ldots, n$

$$p_n(w_j) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{q_n(z)} \frac{q_n(w_j) - q_n(z)}{w_j - z} \, \mathrm{d}z = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w_j} \, \mathrm{d}z = f(w_j),$$

where, in the second step, we have used that $q_n(w_j) = 0$, and, in the last step, Cauchy's integral formula as formulated in (8.1). In other words, p_n solves the following interpolation problem:

Find a holomorphic complex polynomial p with deg $p \le n-1$ such that

$$p(w_j) = f(w_j) \qquad \text{for } j = 1, \dots, n.$$

Note that if w_1, \ldots, w_n are all distinct, then p_n is the unique solution of this interpolation problem. In this case, one can use the so-called *Lagrange polynomials* to find and explicit expression for p_n .

Among all holomorphic complex polynomials p satisfying deg $p \leq n$, there is always at least one best approximation p_* to f, i.e., p_* satisfies the condition $d_n(f, K) = ||f - p_*||_K$. In general, the polynomials p_n defined in (8.2) do not provide best approximations to f. Therefore, it seems possible that a better choice of p_n might lead to better results about the asymptotic behavior of $d_n(f, K)$ as $n \to \infty$. However, one can show that always

$$||f - p_n||_K \le (n+1)d_n(f, K) \qquad \text{for all } n \ge 2.$$

Thus, we see that $\limsup_{n\to\infty} d_n(f,K)^{1/n} \leq \theta$, namely the conclusion of Theorem 8.1, holds if and only if $\limsup_{n\to\infty} \|f-p_n\|_K^{1/n} \leq \theta$.

Example 8.5. Fix $z_0 \in \mathbb{C}$ and $r_0 > 0$ and put $K := \overline{D(z_0, r_0)}$. Then $\operatorname{cap}(K) = r_0$ and the (unique) equilibrium measure ν_K is given by $\nu_K = \frac{1}{2\pi r_0} \sigma_{\partial D(z_0, r_0)}$. One finds that the associated logarithmic potential Φ_{ν_K} is of the form

$$\Phi_{\nu_K}(z) = \begin{cases} \log \frac{1}{r_0}, & \text{if } |z - z_0| \le r_0\\ \log \frac{1}{|z - z_0|} & \text{if } |z - z_0| > r_0 \end{cases}.$$

Figure 1: Graph of the potential Φ_{ν_K} for the equilibrium measure ν_K for $K = \overline{D(z_0, r_0)}$ with $z_0 = 1$ and $r_0 = 2$; see Example 8.5.

Now, for any $r > r_0 > 0$, we consider $\Omega := D(z_0, r)$. Then,

$$\theta = \sup_{z \in (\mathbb{C} \cup \{\infty\}) \setminus \Omega} e^{\Phi_{\nu_K}(z) - I(\nu)} = \frac{r_0}{r}.$$

Hence, Theorem 8.1 asserts that $\limsup_{n\to\infty} d_n(f,K)^{1/n} \leq \theta$ for every $f \in \mathcal{O}(\Omega)$. This is in accordance with the rate of approximation of f by its Taylor polynomials at the point z_0 . In fact, if we put

$$T_n(w) := \sum_{k=0}^n \frac{f^{(k)}(z_0)}{k!} (w - z_0)^k$$

for every integer $n \ge 0$, then Cauchy's integral formula yields for every $r_0 < \rho < r$ and all $w \in K$ that

$$f(w) - T_n(w) = \frac{1}{2\pi i} \int_{\gamma_{z_0,\rho,\heartsuit}} f(\zeta) \left(\frac{1}{\zeta - w} - \sum_{k=0}^n \frac{(w - z_0)^k}{(\zeta - z_0)^{k+1}} \right) d\zeta$$
$$= \frac{1}{2\pi i} \int_{\gamma_{z_0,\rho,\circlearrowright}} f(\zeta) \sum_{k=n+1}^\infty \frac{(w - z_0)^k}{(\zeta - z_0)^{k+1}} d\zeta.$$

We infer from the latter that

$$||f - T_n||_K \le ||f||_{\partial D(z_0,\rho)} \frac{1}{1 - \frac{r_0}{\rho}} \left(\frac{r_0}{\rho}\right)^{n+1}$$

which yields $\limsup_{n\to\infty} \|f - T_n\|_K^{1/n} \leq \frac{r_0}{\rho}$; as $r_0 < \rho < r$ was arbitrary, we can let $\rho \nearrow r$, which gives $\limsup_{n\to\infty} \|f - T_n\|_K^{1/n} \leq \theta$.

Example 8.6. For the interval K = [-1, 1], one can show that $cap(K) = \frac{1}{2}$ and that the (unique) equilibrium measure is given by

$$\mathrm{d}\nu_K(x) = \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \,\mathrm{d}x.$$

Further, one obtains that

$$\Phi_{\nu_K}(z) = \begin{cases} \log(2) & \text{if } z \in [-1,1] \\ \log(2) - \log|z + \sqrt{z^2 - 1}| & \text{if } z \in \mathbb{C} \setminus [-1,1] \end{cases}.$$

Figure 2: Graph of the potential Φ_{ν_K} for the equilibrium measure ν_K for K = [-1, 1]; see Example 8.6.