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Remark 5.15. Subharmonic functions have some remarkable applications in functional
analysis.
Let (A, || -]|) be a unital complex Banach algebra. For a € A, we define the spectral radius
r(a) of a by

r(a) ;= max{|z| | z € o(a)},

where
o(a) :={z € C|a— 214 not invertible in A}

is the spectrum of A; recall that we have the formula

n”l/n n”l/n'

r(a) = lim [la"|/" = inf [|la

Vesentini’s theorem says that, for every holomorphic function f : 2 — A on an open set
D£QCC,
s: Q— [—o0,+0), z+—logr(f(z))
is subharmonic, provided that s Z —oo on each connected component of €.
Using this remarkable fact, one can prove Johnson’s theorem which says that a surjective

homomorphism 6 : A; — As between complex Banach algebras A; and A, is automatically
continuous if A, is semisimple (i.e., the intersection of all maximal right ideals in A, is

{0}).

Remark 6.5. Let p: RY — R be in CH(RY) = C.(RY) N C*(RY) for some k > 1. Tt can
be shown that

O(x) := /RN U, (z)p(y) A (y) for » € RY

defines a function ® € C*H(RY).
Further, ® solves Poisson’s equation A® = —axp on RY. Indeed, by Theorem 6.2 (i), we
have for all f € C>°(RY),

Lo(f) = . f(@)A®(z) XY (z),



whereas, for the measures p* defined by du®(y) := p*(y) dA\¥ (y), Theorem 6.4 (ii) yields
that

Lo(f) = Lo, (f) — Lo, (f)
=y | f@)dp™(z) + ay o f(z)dp™ ()

= —ax [ f@)p(z)ax(a),

where the first step relies on the decomposition ® = ®,+ — ®,- which is valid thanks to
p=pt — p~. Hence, in summary, for all f € C>°(RY),

J(2)(AD(x) + axp(x)) AN (x) = 0,

RN

which implies A®(z) = —ayp(z) for all x € RY.

In particular, for N = 3, since a3 = 4w, we get AP = —4mp. In the notatlon of Chapter
1, we have grad ® = —47?50E so that the latter identity yields div E = —p, which is the
dlfferentlal form of Gauss’ law.

Theorem 7.10.
(i) For E C C, we have cap(E) = 0 if and only if E is polar.
(i1) If By C Ey C C, then cap(E;) < cap(Es).
(i11) If E C C and o, p € C, then cap(aE + 5) = |a| cap(E).
(iv) If K C C is compact, then cap(K) = cap(9.K).

(v) For a compact set K C C, we denote by Q(K) the connected component of (C U
{o0}) \ K which contains oc.

If K1, Ky C C are compact and f: Q(K;) — Q(K3) is a meromorphic function sat-
isfying f(z) = 2+ O(1) as z — oo, then cap(Ks) < cap(Ky); if [ is biholomorphic,
then cap(Ky) = cap(K).

(vi) If K C C is compact, then
1. 1
cap(K) < §d1am(K) and cap(K) > 1/ =N (K),
m

where diam(K) := max{|w; — ws| | wi,wy € K} and \* denotes the Lebesgue
measure on C.

(vit) If K C C is compact and q(z) = ZZ:O a2 with ag # 0 a complex polynomial, then

cap(q ™ (K)) = (f”f N

Theorem 7.11 (Fekete-Szegd). Let K C C be compact. Consider the sequence (6,(K))>,
of diameters of K, which was defined in Ezercise 4B-2. Then (5,(K))5, is convergent

and the limit §(K) := lim,,_,o 0,(K) is given by 6(K) = cap(K).



Proof. From Exercise 4B-2 (i), we know that (6, (K))°, is decreasing; since 0,(K) > 0
for all n > 2, it follows that (4, (K))52, is convergent.

® Claim: For all n > 2, it holds that §,,(K) > cap(K).
For wy, ..., w, € K, we have by definition of §, (K) that
2
— log |w; — w;| < logd,(K).
n(n —1) 13%371 !

Hence, for every p € P(K), we get by integration of the latter inequality with respect to
the product measure p" over K"

Z / /log|wl wj| dp(wy) - - - dp(wy) < log d,(K).

1<2<]<n

Since for each of the "—)

/K e /Klog lw; — wj| dp(wy) -+ dp(w,) = /K/Klog [w; — w;| dp(w;) dp(w;) = =1 (),

we infer from the latter that e~/ < §,(K). Thus, if follows that

cap(K) = sup e '™ <§,(K),
HEP(K)

possible choices of indices 1 <7< 7 <n

as desired.

@ Claim: For each n > 2, let w™ = (wgn), e ,w&”)) be a Fekete n-tuple for K and define
pn € P(K) b
1 n
- — 5?1)(”) .
=1

Let (pin, )52, be a subsequence of (p,,)5°; which is weak*-convergent to some v € P(K).
Then I(v) < —logd(K).

For R > 0, we set logp(x) := min{log(x), R}. Then, by monotone convergence,

}%ggo//log3|z_w| (=) do ()

and thus, since (p,, )7, is weak*-convergent to v,

1) = Jim Jim [ [ 8 T i (2) i ().

R—00 k—o00

Next, we observe that

1
/ / logp — dﬂnk( )dﬂnk Z IOgR ”k (1)
|2 - e

’Lj 1 w;
2 1 1
- n2 Z logr | (k) (k) + okt
k 1<i<j<n i k
2 1 R
< — Z log —
— 2 n n
n; S Ten |w( k) ( k)| N
ne — 1




Hence, we deduce that

1) < lim dim (=" logs,, (K) + -0) = ~loga(K).

T R—oo k—oo N ng

as asserted.

® Combining the results derived above, we obtain that

2 2 1w ~I(w)
cap(K) <d(K) <e < sup e = cap(K),
neP(K)

i.e., 0(K) = cap(K), which proves the theorem.

Further, we see that v must be an equilibrium measure for K. As there is a unique
equilibrium measure vk for K in the case cap(K) > 0, it follows from @ that the sequence
()52, then has v as its only limit point; therefore, (p,)5 itself must be weak*-
convergent to vg. O

Remark 8.4. We notice that the polynomials p,, defined in (8.2) satisfy for j =1,...,n

L fE) ew) —alz) L fe)
Pa(13) T omi r qn(2) w; — 2 dz = 21 Jp 2 — w, dz = fluw;),

where, in the second step, we have used that ¢,(w;) = 0, and, in the last step, Cauchy’s in-
tegral formula as formulated in (8.1). In other words, p,, solves the following interpolation
problem:

Find a holomorphic complex polynomial p with degp < n — 1 such that
p(w;) = f(w,) forj=1,... n.

Note that if wq, ..., w, are all distinct, then p,, is the unique solution of this interpolation
problem. In this case, one can use the so-called Lagrange polynomials to find and explicit
expression for p,,.

Among all holomorphic complex polynomials p satisfying degp < n, there is always at
least one best approximation p, to f, i.e., p, satisfies the condition d,,(f, K) = || f — p«|| k-
In general, the polynomials p,, defined in (8.2) do not provide best approximations to f.
Therefore, it seems possible that a better choice of p, might lead to better results about
the asymptotic behavior of d,(f, K) as n — co. However, one can show that always

| f = pullx < (n+1)d,(f, K) for all n > 2.

Thus, we see that limsup,,_,._ d,(f, K)/" < 6, namely the conclusion of Theorem 8.1,

holds if and only if limsup,, ,_ || f — pa|[i" < 6.

Example 8.5. Fix zy € C and ry > 0 and put K := D(zg,r9). Then cap(K) = ry and
the (unique) equilibrium measure v is given by vx = ﬁaap(mm). One finds that the
associated logarithmic potential ®,, is of the form

log - if |z — 20| <
@VK(Z):{OgTO’ ! |Z ZO| =To

log |Z_1z0| if 2 — 20| > 70




Figure 1: Graph of the potential ®,, for the equilibrium measure vg for K = D(zg,ro)
with zp = 1 and ry = 2; see Example 8.5.

Now, for any r > rg > 0, we consider  := D(zp,r). Then,
= sup P10 = o,

2€(CU{co})\Q2 r

Hence, Theorem 8.1 asserts that limsup,, . d,(f, K)"/" < 6 for every f € O(Q). This is
in accordance with the rate of approximation of f by its Taylor polynomials at the point
zo. In fact, if we put

— ™ (2)

k=0
for every integer n > 0, then Cauchy’s integral formula yields for every ro < p < r and
all w € K that

n

s -mw) =5 [ 50( - 2 ) «

k=0
1 = (w—z)k
== f(Q) —— 46
271 N kzn;rl (¢ — zg)ktt
We infer from the latter that
1 To ntl
If =Tl < fllopconT— | =)
which yields limsup,,_, . ||f — TnH}(/" < %0; as 1o < p < r was arbitrary, we can let p *r,

which gives limsup,,_, || f — TnH}(/" <40.

Example 8.6. For the interval K = [—1,1], one can show that cap(K) = 1 and that the
(unique) equilibrium measure is given by

1

Further, one obtains that

o ()_ log(2) ifZE[—l,l]
T Vlow(@) —log |2 + V1| ifzeC\[-1,1)



for the equilibrium measure vg for K = [—1, 1]; see

VK

Figure 2: Graph of the potential ®

Example 8.6.



