Millenium Problems: The Birch and Swinnerton-Dyer conjecture (Part II)

Conjecture: Let E be an elliptic curve over a number field K with

\[L_E(K)(s) := \prod_{p \text{ prim}} \frac{1}{1-(p+1-N_p)p^{-s}p^{1-2s)}, s \in \mathbb{C}, \text{Re } s > \frac{3}{2} \]

\[, N_p = \# \{ \text{solutions of } y^2 \equiv x^3 + ax + b \text{ mod } p \} \]

having an analytic extension to the complex plane. Let r denote the rank of $E(K)$. Then r is equal to the order of the zero of $L_E(K)(s)$ at the point $s = 1$.

Proposition: $E(\mathbb{Q})$ is an abelian group with identity element 0 and the composition “+”.

Theorem (Mordell, 1922): If E is an elliptic curve over \mathbb{Q}, then

\[E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus E(\mathbb{Q})_{Tors}. \]

for some integer $r \geq 0$, where $E(\mathbb{Q})_{Tors.}$ is a finite abelian group.

Remark: If we want to study the rational solutions of a curve C it is the genus that tells us how complicated the curve is.

Theorem: Let C be an irreducible curve of order n with m double points as its only singularities. Then

\[g = g(C) = \frac{(n-1)(n-2)}{2} - m \]

is a non-negative integer.

$g(C)$ is called the **genus** of the (irreducible) curve C.

Theorem (Hilbert & Hurwitz, 1890): If the genus of a curve is zero, then it is birationally equivalent to either a line or a conic and $C(\mathbb{Q})$ is infinite.

Theorem (Faltings, 1983): If the genus of C is greater than or equal to 2, then $C(\mathbb{Q})$ is finite.

Definition: An elliptic curve E is a curve with genus 1.