The P Versus NP Problem

Gorav Jindal, Anurag Pandey and Harry Zisopoulos

- Hilbert's Entscheidungsproblem asks for a purely mechanical procedure that can decide whether a given mathematical statement is valid or not.
 - What is a "purely mechanical procedure", also called an algorithm?
- Turing(1936) formalized the notion of an algorithm by defining the model of Turing Machines.

Definition 1 (Language). A language L is just a subset of $\{0,1\}^*$, or equivalently a function L_f : $\{0,1\}^* \to \{0,1\}$. Here $L_f(x) = 1$ if and only if $x \in L$.

• Every decidable (computable) language has an associated time complexity.

Definition 2 (Time Complexity). A Turing machine M computes a function $f : \{0, 1\}^* \to \{0, 1\}$ in time T(n) if $\forall x \in \{0, 1\}^*$, M on input x, halts after $\leq T(|x|)$ steps and outputs f(x).

- Time complexity of a language L is the complexity of "fastest" Turing machine computing L_f .
- (Extended) Church Turing Hypothesis :- Turing machines can simulate any computation "efficiently".

Definition 3 (Complexity class). A complexity class is just a set of languages.

• Complexity class P is the set of "easy" languages.

Definition 4 (Complexity class P). A language L is P if time complexity T(n) of L is a polynomially bounded function of n.

- Examples of "easy" problems (languages), i.e, which are in P.
 - Matrix Multiplication, easy to see.
 - Primality testing, a very non-trivial algorithm, so called AKS(2002) algorithm.
 - Linear programming, by so called "ellipsoid method".
- NP is the set of languages whose solutions are "easy to verify".

Definition 5 (Complexity class NP). A language L is NP if there exists a "polynomial time complexity" Turing machine M such that $\forall x \in L, \exists w \in \{0,1\}^{|x|^c}$ with M(x,w) = 1, here c is some constant. This w is called a witness/certificate/proof for x, to the fact that $x \in L$. M is called a "verifier" for L. Thus NP is the set of languages which have "small" (polynomial size) witnesses/certificates/proofs and "efficient" (having polynomial time complexity) verifiers.

- See that $P \subseteq NP$ because for every language L in P, we can use empty witness and machine for L as the verifier.
- Examples of problems (languages) which are "easy" to verify, i.e, which are in NP.
 - Subset Sum

Satisfiability

- Informally, a problem (language) L is NP-hard if a polynomial time algorithm for L implies a polynomial time algorithm for all problems in NP, i.e. L is NP-hard if the statement " $L \in P \Longrightarrow$ P = NP" is true.
- A problem L is NP-complete if L is NP-hard and $L \in NP$.
- Examples of NP-hard problems (languages).
 - Subset Sum, is NP-complete also.
 - Satisfiability, is NP-complete also.
 - Polynomial System Solving (Hilbert's Nullstellensatz), is NP-complete over finite fields but not known to be NP-complete over infinite fields.
 - Integer Linear Program (ILP), is NP-complete also.
 - Traveling Salesman Problem, is NP-complete also.
 - Tensor Rank, is not known to be NP-complete.

Problem 6 (P vs NP Problem). Is P a strict subset of NP or is P = NP?

Note that if any NP-complete problem belongs to P, then all NP-complete problems belong to P. That would imply P = NP. So "P vs NP Problem" essentially asks whether any one of the NP-complete problems/languages is in P. We now know thousands of NP-complete problems. It is a common theme that every area of mathematics has corresponding computational problems which are NP-complete. Sometimes these problems are only known to be NP-hard and not NP-complete, as Polynomial System Solving. Gödel essentially observed in his letter to von Neumann that the following language $L_{\rm math}$ is in NP. We use the notation $1^n = \underbrace{111\dots1111}_{n \text{-times}}$.

$$\sim$$

 $L_{\text{math}} \stackrel{\text{def}}{=\!\!=\!\!=} \{(\phi, 1^n) \mid \phi \text{ is a valid mathematical statement having a proof of length at most } n\}.$

Note that proof of ϕ of length at most n can serve as the witness/certificate for checking if $(\phi, 1^n) \in$ L_{math} , this checking can be done in polynomial time. Thus $L_{\text{math}} \in \mathsf{NP}$. Gödel also asks in that letter to von Neumann, whether or not $L_{\text{math}} \in \mathsf{P}$?

 $\mathsf{P} = \mathsf{NP}$ would imply that $L_{\text{math}} \in \mathsf{P}$. This would imply that L_{math} can be solved in time $O(n^c)$ for some $c \ge 0$. Assuming that this c is not too large, would imply the existence of a "practical" algorithm for $L_{\rm math}$. That would imply that there exists an efficient algorithm which can check whether there exists a "short" proof of a given mathematical statement, thus undermining the creative effort of a mathematician in finding "short" proofs of mathematical statements.

Theorem 7 (Ladner's theorem). If $\mathsf{P} \neq \mathsf{NP}$ then there exist languages $L \in \mathsf{NP} \setminus \mathsf{P}$ which are not NP-complete.