
The P Versus NP Problem

Gorav Jindal, Anurag Pandey and Harry Zisopoulos

• Hilbert’s Entscheidungsproblem asks for a purely mechanical procedure that can decide whether
a given mathematical statement is valid or not.

– What is a “purely mechanical procedure”, also called an algorithm?

• Turing(1936) formalized the notion of an algorithm by defining the model of Turing Machines.

Definition 1 (Language). A language L is just a subset of {0, 1}∗, or equivalently a function Lf :
{0, 1}∗ → {0, 1}. Here Lf (x) = 1 if and only if x ∈ L.

• Every decidable (computable) language has an associated time complexity.

Definition 2 (Time Complexity). A Turing machine M computes a function f : {0, 1}∗ → {0, 1} in
time T (n) if ∀x ∈ {0, 1}∗, M on input x, halts after ≤ T (|x|) steps and outputs f(x).

• Time complexity of a language L is the complexity of “fastest” Turing machine computing Lf .

• (Extended) Church Turing Hypothesis :- Turing machines can simulate any computation “effi-
ciently”.

Definition 3 (Complexity class). A complexity class is just a set of languages.

• Complexity class P is the set of “easy” languages.

Definition 4 (Complexity class P). A language L is P if time complexity T (n) of L is a polynomially
bounded function of n.

• Examples of “easy” problems (languages), i.e, which are in P.

– Matrix Multiplication, easy to see.

– Primality testing, a very non-trivial algorithm, so called AKS(2002) algorithm.

– Linear programming, by so called “ellipsoid method”.

• NP is the set of languages whose solutions are “easy to verify”.

Definition 5 (Complexity class NP). A language L is NP if there exists a “polynomial time complexity”
Turing machine M such that ∀x ∈ L,∃w ∈ {0, 1}|x|cwith M(x,w) = 1, here c is some constant. This
w is called a witness/certificate/proof for x, to the fact that x ∈ L. M is called a “verifier” for L.
Thus NP is the set of languages which have “small” (polynomial size) witnesses/certificates/proofs and
“efficient” (having polynomial time complexity) verifiers.

• See that P ⊆ NP because for every language L in P, we can use empty witness and machine for
L as the verifier.

• Examples of problems (languages) which are “easy” to verify, i.e, which are in NP.

– Subset Sum

1

– Satisfiability

• Informally, a problem(language) L is NP-hard if a polynomial time algorithm for L implies a
polynomial time algorithm for all problems in NP, i.e, L is NP-hard if the statement “L ∈ P =⇒
P = NP” is true.

• A problem L is NP-complete if L is NP-hard and L ∈ NP.

• Examples of NP-hard problems (languages).

– Subset Sum, is NP-complete also.

– Satisfiability, is NP-complete also.

– Polynomial System Solving (Hilbert’s Nullstellensatz), is NP-complete over finite fields but
not known to be NP-complete over infinite fields.

– Integer Linear Program (ILP), is NP-complete also.

– Traveling Salesman Problem, is NP-complete also.

– Tensor Rank, is not known to be NP-complete.

Problem 6 (P vs NP Problem). Is P a strict subset of NP or is P = NP?

Note that if any NP-complete problem belongs to P, then all NP-complete problems belong to P.
That would imply P = NP. So “P vs NP Problem” essentially asks whether any one of the NP-complete
problems/languages is in P. We now know thousands of NP-complete problems. It is a common theme
that every area of mathematics has corresponding computational problems which are NP-complete.
Sometimes these problems are only known to be NP-hard and not NP-complete, as Polynomial System
Solving. Gödel essentially observed in his letter to von Neumann that the following language Lmath is
in NP. We use the notation 1n = 111 . . . 1111︸ ︷︷ ︸

n-times

.

Lmath
def
==== {(φ, 1n) | φ is a valid mathematical statement having a proof of length at most n}.

Note that proof of φ of length at most n can serve as the witness/certificate for checking if (φ, 1n) ∈
Lmath, this checking can be done in polynomial time. Thus Lmath ∈ NP. Gödel also asks in that letter
to von Neumann, whether or not Lmath ∈ P?

P = NP would imply that Lmath ∈ P. This would imply that Lmath can be solved in time O(nc) for
some c ≥ 0. Assuming that this c is not too large, would imply the existence of a “practical” algorithm
for Lmath. That would imply that there exists an efficient algorithm which can check whether there
exists a “short” proof of a given mathematical statement, thus undermining the creative effort of a
mathematician in finding “short” proofs of mathematical statements.

Theorem 7 (Ladner’s theorem). If P 6= NP then there exist languages L ∈ NP \ P which are not
NP-complete.

2

