The P Versus NP Problem

Gorav Jindal, Anurag Pandey and Harry Zisopoulos

November 20, 2017

• A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is said to be “polynomially bounded” if there exists a polynomial \(p \in \mathbb{R}[x] \) such that \(f(n) \leq p(n) \) for all \(n \in \mathbb{N} \).

• Arithmetization: Every Boolean circuit can be converted into an equivalent arithmetic circuit.

• \(\mathbb{C}[x_1, x_2, ..., x_n]_d \) denotes the set of complex homogeneous polynomials of degree \(d \) in variables \(x_1, x_2, ..., x_n \). We use \(\overline{S} \) to denote the Zariski closure of a set \(S \).

Definition 1 (Arithmetic or Algebraic Circuit). An arithmetic circuit \(C \) over the field \(F \) and the set of variables \(X = \{x_1, x_2, ..., x_n\} \) is a directed acyclic graph. Every node of \(C \) computes a polynomial in a natural way, polynomial computed by the output node of \(C \) is said to be the polynomial computed by \(C \). Size of \(C \) is the number of nodes in \(C \).

\[
\begin{array}{c}
\times \\
\downarrow \\
\oplus \\
\uparrow \\
1 \\
\downarrow \\
\times \\
\uparrow \\
5 \\
\downarrow \\
3 \\
\downarrow \\
2 \\
\end{array}
\]

• Above circuit has size 6 and computes the polynomial \((x_1 + x_2) \cdot x_2 \cdot (x_2 + 1)\).

Definition 2 (Complexity of a polynomial). Complexity \(L(f) \) of a polynomial \(f \in F[x_1, x_2, ..., x_n] \) is the size of smallest arithmetic circuit computing \(f \).

• A \(p \)-family is a sequence \((f_1, f_2, ..., f_n, \ldots)\) of polynomials such that the number of variables and the degree of \(f_n \) are polynomially bounded functions of \(n \).

Definition 3 (VP and VNP). A \(p \)-family \((f_1, f_2, ..., f_n, \ldots)\) is in class \(VP \) if \(L(f_n) \) is a polynomially bounded function of \(n \). A \(p \)-family \((g_1, g_2, ..., g_n, \ldots)\) is in class \(VNP \) if there exists a \(p \)-family \((f_1, f_2, ..., f_n, \ldots)\) in \(VP \) such that \(g_n = \sum_{e \in \{0, 1\}^n} f_n(x_1, x_2, ..., x_p(n), e_1, e_2, ..., e_q(n)) \) for some polynomially bounded functions \(p(n) \) and \(q(n) \).
• A similar notion of reductions to that of Karp reductions, called p-projections.

• Determinant family (Det\(n\)) is almost “VP-complete” and permanent family (Per\(n\)) is VNP-complete, here

\[
\text{Det}_n \overset{\text{def}}{=} \sum_{\sigma \in S_n} \text{sign}(\sigma) \prod_{i=1}^{n} x_{\sigma(i)}
\]

\[
\text{Per}_n \overset{\text{def}}{=} \sum_{\sigma \in S_n} \prod_{i=1}^{n} x_{\sigma(i)}
\]

• If GRH (Generalized Riemann hypothesis) is true then VP = VNP implies “P = NP”, strictly speaking, the implication “P = NP” in this implication is not exactly P = NP but something closely related.

• So we can study (Det\(n\)) vs (Per\(n\)) instead of P vs NP.

Definition 4 (Orbit Closure of the determinant and border determinantal complexity). Define

\[
D_n \overset{\text{def}}{=} \text{GL}_{n^2} \cdot \text{[Det}_n\]
\]

If \(f \in \mathbb{C}[x_{11}, x_{12}, ...]_m\) then

\[
\overline{dc}(f) \overset{\text{def}}{=} \min\{n \mid x_{nn}^{n-m} f \in D_n\}.
\]

Conjecture 5 (Mulmuley-Sohoni). \(\overline{dc}(\text{Per}_m)\) is not a polynomially bounded function of \(m\).

• GCT (Geometric complexity theory) approach to prove Mulmuley-Sohoni conjecture : define

\[
P^m_n \overset{\text{def}}{=} \text{GL}_{n^2} \cdot \text{[x}_{nn}^{n-m} \text{Per}_m\]
\]

We want to prove that if \(n\) is polynomially bounded in \(m\) then \(P^m_n \not\subset D_n\). If this is true then there exists a non-zero \(g \in \mathbb{C}[P^m_n]\) such that \(g \not\in \mathbb{C}[D_n]\), i.e, \(g\) is equal to zero in \(\mathbb{C}[D_n]\). To find such \(g\), GCT looks at \(\mathbb{C}[P^m_n]\) and \(\mathbb{C}[D_n]\) as GL\(_{n^2}\) representations and tries to find an irreducible representation of GL\(_{n^2}\) which appears with higher multiplicity in the irreducible GL\(_{n^2}\) decomposition of \(\mathbb{C}[P^m_n]\) than in \(\mathbb{C}[D_n]\).

• Waring rank : If \(f \in \mathbb{C}[x_1, x_2, ..., x_n]_d\) then \(W(f) \leq r\) if there exist \(\ell_1, \ell_2, ..., \ell_r \in \mathbb{C}[x_1, x_2, ..., x_n]_1\) such that \(f = \sum_{i=1}^{r} (\ell_i)^d\). Define

\[
S^d_r = \{ f \in \mathbb{C}[x_1, x_2, ..., x_n]_d \mid W(f) \leq r\}
\]

We say that \(\overline{W}(f) \leq r\) if \(f \in \overline{S}^d_r\).

• Characterization of \(\overline{S}^d_2\) in case of \(\mathbb{C}[x, y]_2\). If \(f = ax^2 + bxy + cy^2\) then \(\overline{W}(f) \leq 1\) iff \(g(a, b, c) = b^2 - 4ac = 0\). For this very simple example, this is the desired \(g\) which we wanted to find above.