Definition (Diagonaloperator): Sei H ein Hilbertraum mit Orthonormalbasis $\{e_j\}$. Ein Operator A heißt Diagonaloperator, falls Ae_j skalares Vielfaches von e_j ist, also $Ae_j = \alpha_j e_j \, \forall j$. $\{\alpha_j\}$ nennt man die Diagonale von A.

Satz: $\{\alpha_j\}$ ist genau dann Diagonale eines Operators A, wenn $\{\alpha_j\}$ beschränkt ist. In dem Fall legt $Ae_j = \alpha_j e_j$ den Operator eindeutig fest und es gilt $||A|| = \sup_i |\alpha_j|$.

Satz/ Definition: Die Menge aller beschränkten Folgen von komplexen Zahlen bildet bezüglich punktweiser Operationen eine Algebra mit Eins-Element 1 = (1, 1, ...), Konjugation $\{\alpha_j\}^* = \{\overline{\alpha_j}\}$ und Norm $\|\{\alpha_j\}\| = \sup |\alpha_j|$.

Eine beschränkte Folge $\{\alpha_j\}$ heißt *invertierbar*, falls sie ein Inverses in dieser Algebra hat. Das ist genau dann der Fall, wenn $\exists \delta > 0 : |\alpha_j| \geq \delta \, \forall j$.

Satz: Sei A ein Diagonaloperator mit Diagonale $\{\alpha_j\}$. Dann gilt A ist ein invertierbarer Operator $\Leftrightarrow \{\alpha_j\}$ ist eine invertierbare Folge.

Korollar: Sei A ein Diagonaloperator mit Diagonale $\{\alpha_j\}$. Dann gilt $Spec(A) = \Pi(A) = \overline{\{\alpha_j\}}$ und $\sigma_p(A) = \Gamma(A) = \{\alpha_j\}$

Definition: Sei X ein Maßraum mit Maß μ , φ eine komplexwertige, beschränkte, messbare Funktion auf X. Dann wird der $von \varphi$ induzierte Multiplikationsoperator A auf $\mathcal{L}^2(\mu)$ definiert durch $(Af)(x) = \varphi(x)f(x) \forall x \in X$

Satz: Sei X σ -endlich, φ wie in obiger Definition, A der von φ induzierte Multiplikation-soperator. Dann ist $||A|| = ||\varphi||_{\infty}$

Satz: Sei A ein Operator auf $\mathcal{L}^2(\mu)$, μ σ -endlich, sodass $\exists \varphi \in \mathcal{L}^2(\mu)$ mit $Af = \varphi f \ \forall f \in \mathcal{L}^2(\mu)$

Dann ist φ messbar und beschränkt.

Satz/ Definition: Die Menge aller beschränkten, messbaren Funktionen bildet bezüglich punktweiser Operationen eine Algebra mit Eins-Element $\varphi(x)=1 \, \forall x$, Konjugation $\varphi^*=\overline{\varphi}$ und Norm $\|\varphi\|_{\infty}$.

Eine beschränkte, messbare Funktion φ heißt *invertierbar*, falls sie ein Inverses in dieser Algebra hat. Das ist genau dann der Fall, wenn $\exists \delta > 0 : |\varphi| \ge \delta$ fast überall.

Satz: Sei μ σ -endlich, A der von φ induzierte Multiplikationsoperator. Dann gilt A ist ein invertierbarer Operator $\Leftrightarrow \varphi$ ist eine invertierbare Funktion

Korollar: Sei μ σ -endlich, A der von φ induzierte Multiplikationsoperator. Dann gilt $Spec(A) = \Pi(A) = essrange(\varphi)$ und $\sigma_p(A) = \Gamma(A) = \{\lambda \in \mathbb{C} | \mu(\varphi^{-1}(\{\lambda\})) > 0\}$