

Random Matrices

Summer term 2018

Assignment 2

Due: Friday, April 27, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 3 (5 points). Let A be a symmetric matrix in $M_N(\mathbb{R})$ and consider its empirical spectral measure $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$, where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of A. Prove that for any $z \in \mathbb{C}_+$ the Stieltjes transform g_{μ_N} of μ_N is given by

$$g_{\mu_N}(z) = \operatorname{tr}(A - zI)^{-1}.$$

Problem 4 (20 points). Prove Proposition 1.6 from the lecture: Let μ be a measure on \mathbb{R} with finite total mass $\mu(\mathbb{R})$ and denote by g_{μ} its Stieltjes transform. Show the following:

- (i) For any $z \in \mathbb{C}_+$, $|g_\mu(z)| \le \frac{\mu(\mathbb{R})}{\operatorname{Im}(z)}$.
- (ii) g_{μ} is analytic over \mathbb{C}_+ .
- (iii) $\operatorname{Im}(g_{\mu}(z)) > 0$ for all $z \in \mathbb{C}_+$.
- (iv) If $\operatorname{supp} \mu \subset \mathbb{R}_+$ then $\operatorname{Im}(zg_\mu(z)) \ge 0$ for all $z \in \mathbb{C}_+$.
- (v) $\lim_{y\to\infty} iyg_{\mu}(iy) = -\mu(\mathbb{R}).$

Problem 5 (10 + 10 points). Denote by μ the semicircle distribution.

(i) Prove, by using the Catalan recurrence relation

$$C_k = \sum_{l=0}^{k-1} C_l C_{k-l-1} \quad (k \ge 1), \qquad C_0 = 1,$$
(1)

that the Stieltjes transform g_{μ} of μ satisfies the equation

$$g_{\mu}(z) = -\frac{1}{z} - \frac{1}{z} (g_{\mu}(z))^2$$

for all $z \in \mathbb{C}_+$ with |z| > 2.

Hint: Use the Cauchy product formula for power series.

(ii) Deduce that for all $z \in \mathbb{C}_+$,

$$g_{\mu}(z) = \frac{-z + \sqrt{z^2 - 4}}{2},$$

and use this to get back the original measure μ via the inversion formula.

Problem 6 (10^{*} points). In this problem we revisit, inspired by the previous problem, Problem 1 from last week. (Note that you cannot obtain additional points with this exercise if you already solved Problem 1 (1) correctly.)

We want to show that the recurrence relation (1) has the Catalan numbers as (only) solution. In order to do this, employ the generating function

$$f(z) = \sum_{k=0}^{\infty} C_k z^k$$

and proceed as follows:

- (i) Show that (1) implies $f(z) = 1 + zf(z)^2$.
- (ii) Show that f is a power series representation for

$$\frac{1-\sqrt{1-4z}}{2z}$$

(iii) Show that

$$C_k = \frac{1}{k+1} \binom{2k}{k}.$$