

Random Matrices

Summer term 2018

Assignment 3

Due: Friday, May 4, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 7 (10 points). Let Z, Z_1, \ldots, Z_r be independent standard complex Gaussian random variables with mean 0 and $\mathbb{E}\left[|Z_i|^2\right] = 1$ for $i = 1, \ldots, n$.

(i) Show that

$$\mathbb{E}\left[Z_{i_1}\cdots Z_{i_r}\overline{Z_{j_1}}\cdots \overline{Z_{j_r}}\right] = \#\{\sigma \in S_r \,|\, i = j \circ \sigma\}.$$

(ii) Show that

$$\mathbb{E}\left[Z^{n}\overline{Z}^{m}\right] = \begin{cases} 0, & m \neq n, \\ n!, & m = n. \end{cases}$$

Problem 8 (10 points). Let $A = (a_{ij})_{i,j=1}^N$ be a Gaussian (GUE) random matrix with entries $a_{ij} = x_{ij} + iy_{ij}$ and with the normalization $\mathbb{E}\left[|a_{ij}|^2\right] = \frac{1}{N}$. Consider the N^2 random vector

$$(x_{11},\ldots,x_{NN},x_{12},\ldots,x_{1N},\ldots,x_{N-1,N},y_{12},\ldots,y_{N-1,N})$$

and show that it has density

$$c \exp\left(-N\frac{\operatorname{Tr}\left(A^{2}\right)}{2}\right) \mathrm{d}A,$$

where c is a constant and

$$dA = \left(\prod_{i=1}^{N} dx_{ii}\right) \left(\prod_{i < j} dx_{ij} y_{ij}\right)$$

is the Lebesgue measure on \mathbb{R}^{N^2} .

Please turn the page.

Problem 9 (20 + 5* points). Let μ be a probability measure on \mathbb{R} with moments

$$m_k = \int_{\mathbb{R}} x^k \,\mathrm{d}\mu(x) \qquad (k \in \mathbb{N}_0)$$

and let φ_{μ} be its characteristic function given by

$$\varphi_{\mu} \colon \mathbb{R} \to \mathbb{C}, \ t \mapsto \int_{\mathbb{R}} e^{itx} \,\mathrm{d}\mu(x).$$

- (i) Calculate the Taylor series expansion of φ_{μ} at t = 0.
- (ii) Show that the following conditions are equivalent:
 - (a) φ_{μ} is analytic over \mathbb{R} .
 - (b) φ_{μ} is analytic at 0.
 - (c) $\limsup_{k\to\infty} \left(\frac{1}{k!} |m_k|\right)^{\frac{1}{k}} < \infty$
- (iii) Deduce that if one of the equivalent conditions in (ii) is satisfied, μ is characterized by its moments.
- (iv) Show that the real Gaussian measure is determined by its moments.
- (v^{*}) Use the Carleman condition to show directly that the real Gaussian measure is determined by its moments.
- **Hint:** The characteristic function φ_{μ} uniquely determines the measure μ .