

Random Matrices

Summer term 2018

Assignment 5

Due: Friday, May 18, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 14 (20 points). Recall that the spectral norm of a matrix A is defined as

$$||A|| = \max\left\{\sqrt{\lambda}; \lambda \text{ is an eigenvalue of } A^*A\right\}$$

For a vector $a \in \mathbb{C}^n$, we denote by $\|\cdot\|_2$ the Euclidean norm given by

$$||a||_2 = \left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}}.$$

Recall further that if A is Hermitian with Eigenvalues $\lambda_1, \ldots, \lambda_n$, then by the spectral theorem there is a unitary matrix U such that

$$A = U\Lambda U^*,$$

where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

(i) Show that if A is real symmetric then

 $||A|| = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } A\}.$

- (ii) Show that $||A|| \le \max\{||Ax||_2; ||x||_2 \le 1\}.$
- (iii) Let $a \in \mathbb{C}^n$ and suppose that A is the rank-one matrix given by $A = aa^*$. Show that a is an eigenvector of A and specify its associated eigenvalue.
- (iv) Show that $||A|| = \sup \{ |y^*Ax|; ||x||_2 \le 1, ||y||_2 \le 1 \}.$ Hint: Write $|y^*Ax|^2 = x^*A^*yy^*Ax.$
- (v) Deduce that for all $x, y \in \mathbb{C}^n$, $|y^*Ax| \le ||A|| ||x||_2 ||y||_2$.
- (vi) Let A be positive semi-definite. Show that for any matrix B,

$$|\operatorname{Tr}(AB)| \le ||B|| \operatorname{Tr}(A).$$

Please turn the page.

Problem 15 (20 points). The Hilbert-Schmidt norm $(L^2$ -norm) of a matrix $A = (a_{ij})_{i,j=1}^n$ is defined by

$$||A||_2 = (\operatorname{Tr} (A^*A))^{\frac{1}{2}} = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2}.$$

- (i) Let A, B, U be $n \times n$ -matrices. Prove that:
 - (1) $|Tr(AB)| \le ||A||_2 \cdots ||B||_2$
 - (2) If U is unitary then $||AU||_2 = ||UA||_2 = ||A||_2$.
 - (3) If B is normal then $\max\{\|AB\|_2, \|BA\|_2\} \le \|B\| \|A\|_2$.
- (ii) Let A be selfadjoint and let $G_A(z) = (A zI)^{-1}$ for $z \in \mathbb{C}_+$. Prove that

$$\|G_A(z)\| \le \frac{1}{\operatorname{Im}(z)}.$$