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Problem 14 (20 points). Recall that the spectral norm of a matrix A is defined as

‖A‖ = max
{√

λ; λ is an eigenvalue of A∗A
}
.

For a vector a ∈ Cn, we denote by ‖·‖2 the Euclidean norm given by

‖a‖2 =

(
n∑

i=1

|ai|2
) 1

2

.

Recall further that if A is Hermitian with Eigenvalues λ1, . . . , λn, then by the spectral
theorem there is a unitary matrix U such that

A = UΛU∗,

where Λ = diag(λ1, . . . , λn).

(i) Show that if A is real symmetric then

‖A‖ = max {|λ| ; λ is an eigenvalue of A} .

(ii) Show that ‖A‖ ≤ max {‖Ax‖2 ; ‖x‖2 ≤ 1}.

(iii) Let a ∈ Cn and suppose that A is the rank-one matrix given by A = aa∗. Show that
a is an eigenvector of A and specify its associated eigenvalue.

(iv) Show that ‖A‖ = sup {|y∗Ax| ; ‖x‖2 ≤ 1, ‖y‖2 ≤ 1}.
Hint: Write |y∗Ax|2 = x∗A∗yy∗Ax.

(v) Deduce that for all x, y ∈ Cn, |y∗Ax| ≤ ‖A‖ ‖x‖2 ‖y‖2.

(vi) Let A be positive semi-definite. Show that for any matrix B,

|Tr(AB)| ≤ ‖B‖Tr(A).

Please turn the page.



Problem 15 (20 points). The Hilbert-Schmidt norm (L2-norm) of a matrix A = (aij)
n
i,j=1

is defined by

‖A‖2 = (Tr (A∗A))
1
2 =

√√√√ n∑
i,j=1

|aij|2.

(i) Let A,B, U be n× n-matrices. Prove that:

(1) |Tr(AB)| ≤ ‖A‖2 · · · ‖B‖2
(2) If U is unitary then ‖AU‖2 = ‖UA‖2 = ‖A‖2.
(3) If B is normal then max{‖AB‖2 , ‖BA‖2} ≤ ‖B‖ ‖A‖2.

(ii) Let A be selfadjoint and let GA(z) = (A− zI)−1 for z ∈ C+. Prove that

‖GA(z)‖ ≤ 1

Im(z)
.


