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Problem 16 (10 points). (Matrix identities) Let u, v, w ∈ Cn and let A,B ∈ Mn(C) be
invertible.

(i) Show that for each m ∈ N0,

A−1 =
m∑
k=0

B−1
[
(B − A)B−1

]k
+ A−1

[
(B − A)B−1

]m+1
.

(ii) Show that

(I + wv∗)−1 = I − wv∗

1 + v∗w
.

(iii) Suppose that the rank-one perturbation A+ uv∗ is invertible. Deduce the Sherman-
Morrison identity

(A+ uv∗)−1 = A−1 − A−1uv∗A−1

1 + v∗A−1u
.

(iv) Deduce

Tr(A+ uv∗)−1 = Tr
(
A−1

)
− v∗ (A−1)

2
u

1 + v∗A−1u

and
(A+ uv∗)−1uv∗ = A−1

uv∗

1 + v∗A−1u
.

Problem 17 (20 points). Let u ∈ Cn and A,B ∈ Mn(C) with A selfadjoint. The aim of
this exercise is to prove that for all z ∈ C+,∣∣Tr [(A+ uu∗ − zI)−1B

]
− Tr

[
(A− zI)−1B

]∣∣ ≤ ‖B‖
Im z

. (?)

(i) Prove, using the Sherman-Morrison identity, that for all z ∈ C+,

Tr
[
(A+ uu∗ − zI)−1B

]
− Tr

[
(A− zI)−1B

]
= −u

∗(A− zI)−1B(A− zI)−1u
1 + u∗(A− zI)−1u

.



(ii) Prove that for all z ∈ C+,

Im
(
1 + u∗(A− zI)−1u

)
= Im(z)

n∑
i=1

|u∗vi|2

|λi − z|2
,

where the λi are the eigenvalues of A and the vi are the associated eigenvectors with
‖vi‖2 = 1 for each i = 1, . . . , n.

(iii) Recall that ‖B‖ = sup‖u‖,‖v‖≤1 |u∗Bv| to prove that for all z ∈ C+,∣∣u∗(A− zI)−1B(A− zI)−1u
∣∣ ≤ ‖B‖ · ∥∥(A− zI)−1u∥∥2 .

(iv) Deduce that (?) holds.

Problem 18 (20 points). Let {Xij; i, j ∈ N} be a family of random variables such that
Xij = Xji. Let XN be the selfadjoint N ×N -matrix defined by

XN =

(
1√
N
Xij

)N
i,j=1

.

(i) We shall see in this part that diagonal entries do not contribute to the limit. Consider
the matrix X(0)

N obtained from XN by replacing the diagonal entries by zero. Prove
that for any z ∈ C+, ∣∣∣gXN

(z)− g
X

(0)
N
(z)
∣∣∣ N→∞−−−→ 0.

(ii) In this part, we show a possible way of truncating the matrix entries and considering
bounded variables.

(1) Let YN and AN be selfadjoint N × N -matrices and let ỸN = YN + AN be a
perturbation of YN . Prove that for any z ∈ C+,∣∣∣∣∣Tr

(
1√
N
YN − zI

)−1
− Tr

(
1√
N
ỸN − zI

)−1∣∣∣∣∣ ≤ 1

(Im z)2

√
TrA2

N .

(2) Let {X̃ij; i, j ∈ N} be the family of random variables defined by

X̃ij = Xij1{|Xij |<σ
√
N}

for some σ > 0 and let

X̃N =

(
1√
N
X̃ij

)N
i,j=1

.

Suppose that for all τ > 0,

LN(τ) =
1

N2

N∑
i,j=1

E [Xij]
2 1{|Xij |≥τ

√
N}

N→∞−−−→ 0.

Show that XN and X̃N have the same limiting distribution.



Problem 19 (10 points). Let A be the mapping given by

A : R
N(N+1)

2 →MN(R), (xij)1≤j≤i≤N 7→ [A(x)ij]
N
i,j=1

with

A(x)ij =
1√
N

{
xij, i ≥ j,

xji, i < j.

For any z ∈ C+, let G = Gz be given by Gz(x) = (A(x)− zI)−1.

(i) Let k, l ∈ {1, . . . , N} wit k 6= l. Show that[
∂G

∂xkk
(x)

]
ij

= − 1√
N
GikGkj

and [
∂G

∂xkl
(x)

]
ij

= − 1√
N

(GikGlj +GilGkj) .

(ii) Define

gz : R
N(N+1)

2 → C, x 7→ 1

N
TrGz(x).

Prove that, for any choice of indices,∣∣∂xi1,j1gz(x)∣∣ ≤ 2

(Im z)2N
3
2

,

∣∣∂xi2,j2∂xi1,j1gz(x)∣∣ ≤ 4

(Im z)3N2
,

∣∣∂xi3,j3∂xi2,j2∂xi1,j1gz(x)∣∣ ≤ 3 · 2 5
2

(Im z)4N
5
2

.


