UNIVERSITAT DES SAARLANDES
FACHRICHTUNG MATHEMATIK
Prof. Dr. Roland Speicher

Dr. Marwa Banna

M.Sc. Ricardo Schnur

Random Matrices
Summer term 2018

Assignment 6

Due: Friday, May 25, 2018, before the lecture
Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 16 (10 points). (Matrix identities) Let u,v,w € C" and let A, B € M, (C) be
invertible.

(i) Show that for each m € Ny,

(ii) Show that
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(iii) Suppose that the rank-one perturbation A 4+ wv* is invertible. Deduce the Sherman-
Morrison identity
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Problem 17 (20 points). Let v € C" and A, B € M,,(C) with A selfadjoint. The aim of
this exercise is to prove that for all z € C,,

|Tr [(A4uu*—2I)7'B] = Tr [(A—2I)"'B]| < % (%)

(i) Prove, using the Sherman-Morrison identity, that for all z € C,,
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(ii) Prove that for all z € Cy,
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where the \; are the eigenvalues of A and the v; are the associated eigenvectors with
|vill, =1 foreach i =1,...,n.

(iii) Recall that || B|| = sup,jsj<1 [¢*Bv| to prove that for all z € C,,

wH(A = 2D B(A = 2) " | < ||B|| - [[(A = 21) " |

(iv) Deduce that (%) holds.

Problem 18 (20 points). Let {Xj;; 4,7 € N} be a family of random variables such that
Xi; = Xji. Let Xy be the selfadjoint N x N-matrix defined by
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(i) We shall see in this part that diagonal entries do not contribute to the limit. Consider

the matrix X ](\(,)) obtained from Xy by replacing the diagonal entries by zero. Prove
that for any z € C,,
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(ii) In this part, we show a possible way of truncating the matrix entries and considering
bounded variables.

(1) Let Yy and Ay be selfadjoint N x N-matrices and let Yy = Yy + Ay be a

perturbation of }/J\/' Prove that for any z € C+,
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(2) Let {X,;; i,7 € N} be the family of random variables defined by
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for some o > 0 and let
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Suppose that for all 7 > 0,
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Show that X and Xy have the same limiting distribution.



Problem 19 (10 points). Let A be the mapping given by
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For any z € Cy, let G = G, be given by G,(z) = (A(x) — zI)~ L.
(i) Let k,l € {1,...,N} wit k # [. Show that
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Prove that, for any choice of indices,
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