

Random Matrices

Summer term 2018

Assignment 7

Due: Friday, June 1, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 20 (15 points). (i) In the first part of this exercise we shall prove the weak law of large numbers: let $(X_i)_{i \in \mathbb{N}}$ be a sequence of independent and identically distributed random variables with common mean $\mu = \mathbb{E}[X_i]$ and variance $\sigma^2 = \mathbb{V}ar[X_i]$. Let

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Show that $\forall t > 0$,

$$\mathbb{P}\left[|S_n - \mu| \ge t\right] \xrightarrow{n \to \infty} 0.$$

- (ii) In this part we shall prove the strong law of large numbers under the assumption that the fourth moment is finite.
 - (1) Let X_1, \ldots, X_n be independent random variables with common mean $\mu = \mathbb{E}[X_i]$ and define S_n as above. Suppose that

$$M_4 = \sup_{1 \le i \le n} \mathbb{E}\left[(X_i - \mu)^4 \right] < \infty.$$

Show that

$$\mathbb{E}\left|\sum_{i=1}^{n} (X_i - \mu)\right|^4 \le 3n^2 M_4$$

and deduce that $\forall t > 0$,

$$\mathbb{P}\left[|S_n - \mu| \ge t\right] \le \frac{3M_4}{n^2 t^4}.$$

(2) Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of independent and identically distributed random variables with common mean $\mu = \mathbb{E}[X_i]$ and such that $\mathbb{E}[X_i^4] < \infty$. Define S_N as above and show that

$$S_n \xrightarrow{n \to \infty} \mu$$
 almost surely.

- **Problem 21** (20 points). (i) Let $b > 0, \sigma \ge 0$ and let X be a real random variable with $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] \le \sigma^2$. Show the following:
 - (1) If $|X| \leq b$ almost surely then for all $\lambda \geq 0$,

$$M_X(\lambda) \le \exp\left(\frac{\sigma^2}{b^2} \left(e^{\lambda b} - \lambda b - 1\right)\right).$$

(2) If for all $k \ge 3$,

$$\mathbb{E}\left[X^k\right] \le \frac{1}{2}k!\sigma^2 b^{k-2}$$

then for all $\lambda \in \left[0, \frac{1}{b}\right]$,

$$M_X(\lambda) \le \exp\left(\frac{\lambda^2 \sigma^2}{2(1-\lambda b)}\right).$$

(ii) Let $b, \sigma_1, \ldots, \sigma_n > 0$ and let X_1, \ldots, X_n be independent *centered* random variables such that $\mathbb{E}[X_i^2] \leq \sigma_i^2$ for all $i = 1, \ldots, n$ and

$$\mathbb{E}\left[X_i^k\right] \le \frac{1}{2}k!\sigma_i^2 b^{k-2}$$

for all $k \geq 3$. Show that for every t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \ge t\right) \le 2\exp\left(-\frac{t^{2}}{2(\sigma^{2}+tb)}\right)$$

where $\sigma^2 = \sum_{i=1}^n \sigma_i^2$.

(iii) Let $b, \sigma_1, \ldots, \sigma_n > 0$ and let X_1, \ldots, X_n be independent centered random variables such that $\mathbb{E}[X_i^2] \leq \sigma_i^2$ and $|X_i| \leq b$ almost surely for all $i = 1, \ldots, n$. Show that for every t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \ge t\right) \le 2\exp\left(-\frac{\sigma^{2}}{b^{2}}H\left(\frac{tb}{\sigma^{2}}\right)\right),$$

where $H(x) = (1+x)\log(1+x) - x$.

Problem 22 (5 points). Let d be a fixed narural number and $(u_i)_{i\in\mathbb{N}}$ be a sequence of centered random vectors in \mathbb{R}^d with covariance matrix $\Sigma = \mathbb{E}\left[u_i u_i^T\right]$. Let $\mathcal{X}_n = (u_1, \ldots, u_n)$ be the $d \times n$ -matrix whose columns are the u_i .

(i) Show that almost surely,

$$\frac{1}{n}\mathcal{X}_n\mathcal{X}_n^T = \frac{1}{n}\sum_{i=1}^n u_i u_i^T \xrightarrow{n \to \infty} \Sigma.$$

(ii) Fix $z \in \mathbb{C}_+$ and consider the map

$$\Phi_z \colon M_N(\mathbb{C}) \to M_N(\mathbb{C}), A \mapsto (A - zI)^{-1}.$$

Show that Φ_z is continuous.

- (iii) Let μ_n and μ^{Σ} be the empirical spectral measures of $\frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T$ and Σ , respectively. Show that $\mu_n \xrightarrow{w} \mu^{\Sigma}$ almost surely as $n \to \infty$.
- (iv) Calculate the limiting distribution as $n \to \infty$ for $\frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T$ under the assumption $\Sigma = \sigma^2 I$.

Problem 23 (20 points). Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independently identically distributed standard Gaussian random variables $\mathcal{N}(0, 1)$ and let A and $(A_n)_{n \in \mathbb{N}}$ be real symmetric positive semidefinite deterministic matrices. We are interested in studying the asymptotic behavior of $x_n^T A_n x_n$, where $x_n = (X_1, \ldots, X_n)^T$. Denote by μ^{A_n} and μ^A the empirical spectral measures of A_n and A respectively, and assume that $\mu^{A_n} \xrightarrow{w} \mu^A$.

(i) Show that if

$$\lim_{k \to \infty} \sup_{n \in \mathbb{N}} \int_{\mathbb{R} \setminus [-k,k]} |x| \, \mathrm{d}\mu^{A_n}(x) = 0 \quad \text{and} \quad \int_{\mathbb{R}} |x| \, \mathrm{d}\mu^A(x) < \infty \tag{(\star)}$$

then

$$\frac{1}{n} \operatorname{Tr} A_n \xrightarrow{n \to \infty} \int_{\mathbb{R}} x \, \mathrm{d} \mu^A(x).$$

(ii) Show that (\star) is satisfied if $\sup_{n \in \mathbb{N}} ||A_n|| \leq M < \infty$ for some M > 0. Deduce that

$$\frac{1}{n}\mathbb{E}\left[x_n^T A_n x_n\right] \xrightarrow{n \to \infty} \int_{\mathbb{R}} x \,\mathrm{d}\mu^A(x).$$

- (iii) Let O_n be an orthogonal $n \times n$ -matrix. Compute the expectation and covariance matrix of the Gaussian vector $O_n x_n$.
- (iv) Deduce that there exist independently identically distributed standard Gaussian random variables Y_i such that

$$\frac{1}{n}x_n^T A_n x_n = \frac{1}{n}\sum_{i=1}^n \lambda_i^{A_n} Y_i^2,$$

where the $\lambda_i^{A_n}$ are the eigenvalues of A_n .

(v) Show that

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}\lambda_{i}^{A_{n}}Z_{i}\right|^{4}\leq\frac{K}{n^{2}},$$

where $Z_i = Y_i^2 - 1$.

(vi) Deduce that almost surely,

$$\frac{1}{n}x_n^T A_n x_n - \mathbb{E}\left[\frac{1}{n}x_n^T A_n x_n\right] \xrightarrow{n \to \infty} 0.$$