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Problem 20 (15 points). (i) In the first part of this exercise we shall prove the weak
law of large numbers: let (Xi)i∈N be a sequence of independent and identically distri-
buted random variables with common mean µ = E [Xi] and variance σ2 = Var [Xi].
Let

Sn =
1

n

n∑
i=1

Xi.

Show that ∀t > 0,
P [|Sn − µ| ≥ t]

n→∞−−−→ 0.

(ii) In this part we shall prove the strong law of large numbers under the assumption
that the fourth moment is finite.

(1) Let X1, . . . , Xn be independent random variables with common mean µ = E [Xi]
and define Sn as above. Suppose that

M4 = sup
1≤i≤n

E
[
(Xi − µ)4

]
<∞.

Show that

E

∣∣∣∣∣
n∑
i=1

(Xi − µ)

∣∣∣∣∣
4

≤ 3n2M4

and deduce that ∀t > 0,

P [|Sn − µ| ≥ t] ≤ 3M4

n2t4
.

(2) Let (Xi)i∈N be a sequence of independent and identically distributed random
variables with common mean µ = E [Xi] and such that E [X4

i ] < ∞. Define SN
as above and show that

Sn
n→∞−−−→ µ almost surely.



Problem 21 (20 points). (i) Let b > 0, σ ≥ 0 and let X be a real random variable
with E [X] = 0 and E [X2] ≤ σ2. Show the following:

(1) If |X| ≤ b almost surely then for all λ ≥ 0,

MX(λ) ≤ exp

(
σ2

b2

(
eλb − λb− 1

))
.

(2) If for all k ≥ 3,

E
[
Xk
]
≤ 1

2
k!σ2bk−2

then for all λ ∈
[
0, 1

b

]
,

MX(λ) ≤ exp

(
λ2σ2

2(1− λb)

)
.

(ii) Let b, σ1, . . . , σn > 0 and let X1, . . . , Xn be independent centered random variables
such that E [X2

i ] ≤ σ2
i for all i = 1, . . . , n and

E
[
Xk
i

]
≤ 1

2
k!σ2

i b
k−2

for all k ≥ 3. Show that for every t > 0,

P

(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(σ2 + tb)

)
where σ2 =

∑n
i=1 σ

2
i .

(iii) Let b, σ1, . . . , σn > 0 and let X1, . . . , Xn be independent centered random variables
such that E [X2

i ] ≤ σ2
i and |Xi| ≤ b almost surely for all i = 1, . . . , n. Show that for

every t > 0,

P

(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
−σ

2

b2
H

(
tb

σ2

))
,

where H(x) = (1 + x) log(1 + x)− x.

Problem 22 (5 points). Let d be a fixed narural number and (ui)i∈N be a sequence of
centered random vectors in Rd with covariance matrix Σ = E

[
uiu

T
i

]
. Let Xn = (u1, . . . , un)

be the d× n-matrix whose columns are the ui.

(i) Show that almost surely,

1

n
XnX T

n =
1

n

n∑
i=1

uiu
T
i

n→∞−−−→ Σ.

(ii) Fix z ∈ C+ and consider the map

Φz : MN(C)→MN(C), A 7→ (A− zI)−1.

Show that Φz is continuous.



(iii) Let µn and µΣ be the empirical spectral measures of 1
n
XnX T

n and Σ, respectively.
Show that µn

w−→ µΣ almost surely as n→∞.

(iv) Calculate the limiting distribution as n → ∞ for 1
n
XnX T

n under the assumption
Σ = σ2I.

Problem 23 (20 points). Let (Xn)n∈N be a sequence of independently identically distribu-
ted standard Gaussian random variables N (0, 1) and let A and (An)n∈N be real symmetric
positive semidefinite deterministic matrices. We are interested in studying the asymptotic
behavior of xTnAnxn , where xn = (X1, . . . , Xn)T . Denote by µAn and µA the empirical
spectral measures of An and A respectively, and assume that µAn

w−→ µA.

(i) Show that if

lim
k→∞

sup
n∈N

∫
R\[−k,k]

|x| dµAn(x) = 0 and
∫
R
|x| dµA(x) <∞ (?)

then
1

n
TrAn

n→∞−−−→
∫
R
x dµA(x).

(ii) Show that (?) is satisfied if supn∈N ‖An‖ ≤M <∞ for some M > 0. Deduce that

1

n
E
[
xTnAnxn

] n→∞−−−→
∫
R
x dµA(x).

(iii) Let On be an orthogonal n × n-matrix. Compute the expectation and covariance
matrix of the Gaussian vector Onxn.

(iv) Deduce that there exist independently identically distributed standard Gaussian
random variables Yi such that

1

n
xTnAnxn =

1

n

n∑
i=1

λAn
i Y 2

i ,

where the λAn
i are the eigenvalues of An.

(v) Show that

E

∣∣∣∣∣ 1n
n∑
i=1

λAn
i Zi

∣∣∣∣∣
4

≤ K

n2
,

where Zi = Y 2
i − 1.

(vi) Deduce that almost surely,

1

n
xTnAnxn − E

[
1

n
xTnAnxn

]
n→∞−−−→ 0.


