

Random Matrices

Summer term 2018

Assignment 8

Due: Tuesday, June 19, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 24 (20 points). Produce histograms for the averaged eigenvalue distribution of a GUE(N) and compare this with the exact analytic density from class.

(i) First, transform the averaged eigenvalue density

$$p_N(\mu) = \frac{1}{N} K_N(\mu, \mu) = \frac{1}{\sqrt{2\pi}} \frac{1}{N} \sum_{k=0}^{N-1} \frac{1}{k!} H_k(\mu)^2 e^{-x^2/2}$$

for the unnormalized GUE(N) into the density $q_N(\lambda)$ for the normalized GUE(N)(with second moment normalized to 1).

- (ii) Then average over sufficiently many normalized GUE(N), plot their histograms, and compare this to the analytic density $q_N(\lambda)$. Do this at least for N = 1, 2, 3, 5, 10, 20, 50.
- (iii) Check numerically that q_N converges to the semicircle for $N \to \infty$.
- (iv) For comparison, also average over Wigner ensembles with non-Gaussian distribution for the entries for some small N.

Problem 25 (10 points). Let (X, \mathcal{B}, ν) be a measure space, and let $\phi_i, \psi_j, 1 \leq i, j \leq N$ be measurable functions such that $\phi_i \psi_j$ is integrable for any i, j. Prove the Cauchy-Binet identity:

$$\int_{X^N} \det(\phi_i(x_j))_{i,j=1}^N \cdot \det(\psi_i(x_j))_{i,j=1}^N d^N \nu(x) = N! \det\left(\int_X \phi_i(x)\psi_j(x) d\nu(x)\right)_{i,j=1}^N$$

Hint: Use the Leibniz expansion of the determinant of a square matrix.

Please turn the page.

Problem 26 (10 points). In this exercise we define the Hermite polynomials H_n by

$$H_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-\frac{x^2}{2}}$$

and want to show that they are the same polynomials we defined in class and that they satisfy the recursion relation. So, starting from the above definition show the following:

- (i) H_n is a monic polynomial of degree n. Furthermore, it is an even function if n is even and an odd function if n is odd.
- (ii) The H_n are orthogonal with respect to the Gaussian measure $d\gamma(x) = (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} dx$. More precisely, show the following:

$$\int_{\mathbb{R}} H_n(x) H_m(x) \, \mathrm{d}\gamma(x) = \delta_{nm} n!$$

(iii) For any $n \ge 1$,

$$xH_n(x) = H_{n+1}(x) + nH_{n-1}(x).$$

Problem 27 (10 points). Let

$$p(\mu_1, \dots, \mu_N) = \frac{1}{N!} \det (K_N(\mu_i, \mu_j))_{i,j=1}^N$$

be the density for the joint eigenvalue distribution for the unnormalized GUE(N), where K_N is the Hermite kernel

$$K_N(x,y) = \sum_{k=0}^{N-1} \psi_k(x)\psi_k(y).$$

Let f be an integrable function. Then we are interested in the following expectation:

$$\mathbb{E}\left(\prod_{i=1}^{N}(1-f(\mu_i))\right) = \int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}p(\mu_1,\mu_2,\ldots,\mu_N)\prod_{i=1}^{N}(1-f(\mu_i))d\mu_1\cdots d\mu_N$$

(i) Give an interpretation for the quantity $\mathbb{E}\left(\prod_{i=1}^{N}(1-f(\mu_i))\right)$ in the case where f is the characteristic function of a subset $I \subset \mathbb{R}$, i.e.,

$$f(\mu) = \begin{cases} 0, & \mu \notin I, \\ 1, & \mu \in I. \end{cases}$$

(ii) Show, by using the Cauchy-Binet identity from Problem 25, that

$$\mathbb{E}\left(\prod_{i=1}^{N} (1-f(\mu_i))\right) = \det\left(\delta_{ij} - \int_{-\infty}^{\infty} \psi_i(\mu)\psi_j(\mu)f(\mu)\,d\mu\right)_{i,j=1}^{N}.$$