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Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

————————————————————————————————

Problem 32 (10 points). Consider the rescaled Hermite functions
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(i) Numerically check that the rescaled Hermite functions have a limit for N → ∞ by
plotting them for different values of N .

(ii) Familiarize yourself with the Airy function. Compare the above plots of ψ̃N for large
N with a plot of the Airy function.

Hint: Use the existing MATLAB implementation of the Airy function:

https://de.mathworks.com/help/symbolic/airy.html

Problem 33 (10 points). Read the first section of the following notes:

Per-Olof Persson: Numerical Methods for Random Matrices

(i) Use the MATLAB code from Section 1.2, which relies on the representation via
Painlevé II, to produce the Tracy-Widom distribution F2.

(ii) Compare this F2 with the histograms you produced for Problem 28.

Please turn the page.

https://de.mathworks.com/help/symbolic/airy.html
https://www.math.uni-sb.de/ag/speicher/lehre/ZMsose18/Persson.pdf


Problem 34 (10 + 5* points). For N = 100, 500, 1000 plot in the complex plane the
eigenvalues of the N×N random matrix 1√

N
AN , where all entries of AN are independent

and identically distributed . . .

(i) . . . Standard Gaussian random variables.

(ii) . . . Bernoulli-distributed random variables.

(iii*) . . . Cauchy-distributed random variables.

Problem 35 (10 points). Prove that the Hermite functions satisfy the differential equa-
tions
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ψN(x) = 0.


