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Problem 36 (20 points). (i) Let XN be the N × p matrix given by

XN =
1
√
p
(Xij)1≤i≤N

1≤j≤p
.

Produce histograms for the eigenvalues of XNX
T
N for N = 50, p = 100 as well as for

N = 500, p = 1000, where the Xij are independently identically distributed . . .

(1) . . . Standard Gaussian random variables.

(2) . . . Rademacher random variables, i.e.,

P [Xij = −1] =
1

2
= P [Xij = 1] .

On the same figures, plot for c = 0.5 = N/p, the density of the Marchenko-Pastur
distribution given by

νc(x) =

√
(λ+ − x)(x− λ−)

2πcx
1[λ−,λ+](x),

where
λ± =

(
1±
√
c
)2

(ii) Let

XN =
1
√
p
(Xij)1≤i≤N

1≤j≤p

with independently identically distributed Standard Gaussian entries and consider
a deterministic hermitian positive semidefinite matrix RN ∈MN(R).

(1) Suppose N is fixed. What is the almost sure limit of

R
1
2
NXNX

T
NR

1
2
N

as p→∞?



(2) Assume now that N, p→∞ in such a way that

cN,p =
N

p
→ c ∈ (0,∞).

Let
RN = diag(1, . . . , 1, 3, . . . , 3, 7, . . . , 7),

where each value appears between bN
3
c and dN

3
e times. Fix N = 500 and

produce histograms for the eigenvalues of

R
1
2
NXNX

T
NR

1
2
N

for c = 0.1, c = 0.3 and c = 0.6.

(3) Comment.

(iii) Suppose that RN = IN + θ1u1u
T
1 + θ2u2u

T
2 , where u1, u2 are deterministic vectors of

norm 1. Produce histograms for the eigenvalues of

R
1
2
NXNX

T
NR

1
2
N

for the following cases:

(1) N = 800, p = 2000, θ1 = 0.1, θ2 = 0.0

(2) N = 800, p = 2000, θ1 = 1.5, θ2 = 0.0

(3) N = 800, p = 2000, θ1 = 3.0, θ2 = 3.5

Problem 37 (15 points).

Let XN be the N × p matrix given by

XN =
1
√
p
(Xij)1≤i≤N

1≤j≤p
.

(i) Prove that XNX
∗
N is positive semidefinite.

(ii) Prove that for any z ∈ C+,

gX∗
NXN

(z) =
N

p
gXNX

∗
N
(z)− p−N

nz
.

Suppose that the empirical spectral measure µXNX
∗
N

converges weakly to a probability
measure µ as N, p→∞ and N

p
→ c ∈ (0, 1).

(iii) What is the limit of µX∗
NXN

?



Set n = N + p and let AN be the n× n Hermitian matrix given by

An =

(
0 X∗

N

XN 0

)
.

(iv) Prove that for any z ∈ C+,
zgA2

n

(
z2
)
= gAn(z).

(v) Deduce that for any z ∈ C+,

gXNX
∗
N
(z) =

n

2Nz
1
2

gAn

(
z

1
2

)
+
p−N
2Nz

.

Problem 38 (15 points). Consider the matrices AN , BN ∈MN(R) given by

AN =


0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1
0 · · · · · · · · · 0

 and BN =


0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0

0
. . . 1

KN 0 · · · · · · 0

 .

(i) Compute rank(AN −BN) and ‖AN −BN‖.

(ii) Assume that N
√
KN → 1. What are the limits of µAN

and µBN
?

(iii) Find the limiting measures of µANA
∗
N
and µBNB

∗
N
for any choice of KN .

(iv) Comment.


