

Random Matrices

Summer term 2018

Assignment 11

Due: Tuesday, July 10, 2018, before the lecture Hand in your solution at the beginning of the lecture or drop it into letterbox 47.

Problem 36 (20 points). (i) Let X_N be the $N \times p$ matrix given by

$$X_N = \frac{1}{\sqrt{p}} \left(X_{ij} \right)_{\substack{1 \le i \le N \\ 1 \le j \le p}}.$$

Produce histograms for the eigenvalues of $X_N X_N^T$ for N = 50, p = 100 as well as for N = 500, p = 1000, where the X_{ij} are independently identically distributed ...

- (1) ... Standard Gaussian random variables.
- (2) ... Rademacher random variables, i.e.,

$$\mathbb{P}[X_{ij} = -1] = \frac{1}{2} = \mathbb{P}[X_{ij} = 1].$$

On the same figures, plot for c = 0.5 = N/p, the density of the Marchenko-Pastur distribution given by

$$\nu_c(x) = \frac{\sqrt{(\lambda^+ - x)(x - \lambda^-)}}{2\pi c x} \mathbf{1}_{[\lambda^-, \lambda^+]}(x).$$

where

$$\lambda^{\pm} = \left(1 \pm \sqrt{c}\right)^2$$

(ii) Let

$$X_N = \frac{1}{\sqrt{p}} \left(X_{ij} \right)_{\substack{1 \le i \le N\\ 1 \le j \le p}}$$

with independently identically distributed Standard Gaussian entries and consider a deterministic hermitian positive semidefinite matrix $R_N \in M_N(\mathbb{R})$.

(1) Suppose N is fixed. What is the almost sure limit of

$$R_N^{\frac{1}{2}} X_N X_N^T R_N^{\frac{1}{2}}$$

as $p \to \infty$?

(2) Assume now that $N, p \to \infty$ in such a way that

$$c_{N,p} = \frac{N}{p} \to c \in (0,\infty).$$

Let

$$R_N = \text{diag}(1, \dots, 1, 3, \dots, 3, 7, \dots, 7),$$

where each value appears between $\lfloor \frac{N}{3} \rfloor$ and $\lceil \frac{N}{3} \rceil$ times. Fix N = 500 and produce histograms for the eigenvalues of

$$R_{N}^{\frac{1}{2}}X_{N}X_{N}^{T}R_{N}^{\frac{1}{2}}$$

for c = 0.1, c = 0.3 and c = 0.6.

- (3) Comment.
- (iii) Suppose that $R_N = I_N + \theta_1 u_1 u_1^T + \theta_2 u_2 u_2^T$, where u_1, u_2 are deterministic vectors of norm 1. Produce histograms for the eigenvalues of

$$R_N^{\frac{1}{2}} X_N X_N^T R_N^{\frac{1}{2}}$$

for the following cases:

- (1) $N = 800, p = 2000, \theta_1 = 0.1, \theta_2 = 0.0$
- (2) $N = 800, p = 2000, \theta_1 = 1.5, \theta_2 = 0.0$
- (3) $N = 800, p = 2000, \theta_1 = 3.0, \theta_2 = 3.5$

Problem 37 (15 points).

Let X_N be the $N \times p$ matrix given by

$$X_N = \frac{1}{\sqrt{p}} \left(X_{ij} \right)_{\substack{1 \le i \le N \\ 1 \le j \le p}}.$$

- (i) Prove that $X_N X_N^*$ is positive semidefinite.
- (ii) Prove that for any $z \in \mathbb{C}_+$,

$$g_{X_N^*X_N}(z) = \frac{N}{p} g_{X_N X_N^*}(z) - \frac{p - N}{nz}.$$

Suppose that the empirical spectral measure $\mu_{X_N X_N^*}$ converges weakly to a probability measure μ as $N, p \to \infty$ and $\frac{N}{p} \to c \in (0, 1)$.

(iii) What is the limit of $\mu_{X_N^*X_N}$?

Set n = N + p and let A_N be the $n \times n$ Hermitian matrix given by

$$A_n = \begin{pmatrix} 0 & X_N^* \\ X_N & 0 \end{pmatrix}.$$

(iv) Prove that for any $z \in \mathbb{C}_+$,

$$zg_{A_n^2}\left(z^2\right) = g_{A_n}(z).$$

(v) Deduce that for any $z \in \mathbb{C}_+$,

$$g_{X_N X_N^*}(z) = \frac{n}{2N z^{\frac{1}{2}}} g_{A_n}\left(z^{\frac{1}{2}}\right) + \frac{p - N}{2N z}.$$

Problem 38 (15 points). Consider the matrices $A_N, B_N \in M_N(\mathbb{R})$ given by

$$A_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \quad \text{and} \quad B_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & 1 \\ K_{N} & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

(i) Compute rank $(A_N - B_N)$ and $||A_N - B_N||$.

- (ii) Assume that $\sqrt[N]{K_N} \to 1$. What are the limits of μ_{A_N} and μ_{B_N} ?
- (iii) Find the limiting measures of $\mu_{A_N A_N^*}$ and $\mu_{B_N B_N^*}$ for any choice of K_N .

(iv) Comment.