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0 Introduction

0.1 Some History

• Hurwitz 1897: “Über die Erzeugung der Invarianten durch Integration”

(origin of random matrices in mathematics according to P. Diaconis, P. For-
rester)

• Wishart 1928: random matrices in statistics for fixed size N

• Wigner 1955: random matrices as statistical models for heavy nuclei, studied
in particular asymptotics for N →∞ (“large N limit”)

• Marchenko, Pastur 1967: asymptotics N →∞ of Wishart matrices

• Since 1960’s: random matrices are important tools in physics
→ quantum chaos
→ universality
important work by Mehta, Dyson

• 1967: influential (first) book “Random Matrices” by Mehta

• ∼ 1972: relation between statistics of eigenvalues of random matrices and
zeros of Riemann ζ-function (Montgomery + Dyson, Odlyzko)

• Since 1990’s: random matrices are studied more and more extensively in math-
ematics
→ Tracy-Widom distribution of largest eigenvalue
→ free probability theory
→ universality of fluctuations
→ “circular law”
→ · · ·
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0.2 What is a random matrix?
Random matrix A = (aij)Ni,j=1, where entries aij are chosen randomly (often we
require A to be selfadjoint).
Example. Choose aij ∈ {−1,+1} with aij = aji for all i, j. Consider all such matrices
and ask for typical or generic behaviour.
[In a more probabilistic language: All allowed matrices have the same probability.]

0.3 Quantity of interest
We are mainly interested in the eigenvalues of the matrices. Consider the situation
from above with aij ∈ {−1,+1} for matrices of different size N .

N = 1: matrix eigenvalues probability
A1 = (1) +1 1

2
A2 = (−1) −1 1

2

N = 2: A1 =
(

1 1
1 1

)
0, 2 1

8

A2 =
(

1 1
1 −1

)
−
√

2,
√

2 1
8

A3 =
(

1 −1
−1 1

)
0, 2 1

8

... ... ...

A8 =
(
−1 −1
−1 −1

)
−2, 0 1

8

General N : We have 2N(N+1)/2 matrices, each with probability 2−N(N+1)/2.
There are always special ones such as

A =


1 · · · 1
... . . . ...
1 · · · 1


with eigenvalues N and 0 (with multiplicity N − 1). They have small probability
and are “atypical”.
Question. What is the “typical” behaviour of the eigenvalues?
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Here is one randomly generated 10× 10 matrix



1 −1 −1 1 −1 1 −1 −1 −1 1
−1 1 −1 −1 1 1 −1 1 1 1
−1 −1 1 1 −1 1 1 1 −1 1
1 −1 1 −1 1 1 −1 −1 −1 1
−1 1 −1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 1 1 −1 1 1
−1 −1 1 −1 −1 1 1 1 −1 1
−1 1 1 −1 −1 −1 1 −1 −1 −1
−1 1 −1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 −1 −1 1



and here is its eigenvalue histogram (with the right scaling, as considered in 0.11)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

If we create another such 10× 10 matrix randomly, then its eigenvalue distribution
looks like this
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Let us now consider growing size of the matrices. Here are the eigenvalue histograms
for two 100× 100 matrices ...

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0
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0.4

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0
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0.25

0.3

0.35

0.4

... and here for two 3000× 3000 matrices ...
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0.4 Wigner’s semicircle law
We see that typically the eigenvalue distribution of such a random matrix converges
to Wigner’s semicircle for N →∞.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.5 Universality
This statement is valid much more generally: Choose the aij not just from {−1,+1}
but, for example,
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• aij ∈ {1, 2, 3, 4, 5, 6},

• aij normally (Gauß) distributed,

• aij distributed according to your favorite distribution,

but still independent (apart from symmetry), then we still have the same result:
The eigenvalue distribution still typically converges to a semicircle for N →∞.

0.6 Concentration phenomena

The (quite amazing) fact that the a priori random eigenvalue distribution is, for
N → ∞, not random anymore, but concentrated on one deterministic distribution
(namely the semicircle) is an example of the general high-dimensional phenomenon
of “measure concentration”.

0.7 Example of such a “strange” concentration in high
dimensions

In high dimensions the volume of a ball is essentially sitting in the surface:
Denote by Br(0) the ball of radius r around 0 in Rn and for 0 < ε < 1 consider
B = {x ∈ Rn | 1− ε ≤ ‖x‖ ≤ 1}. Then we know that

vol(Br(0)) = rn
π
n
2(

n
2 − 1

)
!

and hence

vol(B) = vol(B1(0))− vol(B1−ε(0)) = π
n
2(

n
2 − 1

)
!
(1− (1− ε)n) .

Thus,
vol(B)

vol(B1(0)) = 1− (1− ε)n n→∞−−−→ 1.
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0.8 From histograms to moments
Let AN = A = (aij)Ni,j=1 be our selfadjoint matrix with aij = ±1 randomly chosen.
Then we typically see for the eigenvalues of A:

s t

N →∞

s t

This convergence means

#{eigenvalues in [s, t]}
N

N→∞−−−→
t∫
s

dµW =
t∫
s

pW (x) dx,

where µW is the semicircle distribution, with density pW .
The left-hand side of this is difficult to calculate directly, but we note that the above
statement is the same as

1
N

N∑
i=1

1[s,t](λi) N→∞−−−→
∫
R

1[s,t](x) dµW (x), (?)

where λ1, . . . , λN are the eigenvalues of A counted with multiplicity and 1[s,t] is the
characteristic function of [s, t], i.e,

1[s,t](x) =

1, x ∈ [s, t],
0, x 6∈ [s, t].

Hence in (?) we are claiming that

1
N

N∑
i=1

f(λi) N→∞−−−→
∫
R

f(x) dµW (x)

for all f = 1[s,t]. It is easier to calculate this for other functions f , in particular, for
f of the form f(x) = xn, i.e.,

1
N

N∑
i=1

λni
N→∞−−−→

∫
R

xn dµW (x); (??)
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the latter are the moments of µW . (Note that µW must necessarily be a probability
measure.)
We will see later that in our case the validity of (?) for all f = 1[s,t] is equivalent to
the validity of (??) for all n. Hence we want to show (??) for all n.

0.9 What is the advantage of f(x) = xn over f = 1[s,t]?

Note that A = A∗ is selfadjoint and hence can be diagonalized, i.e., A = UDU∗,
where U is unitary and D is diagonal with dii = λi for all i. Moreover, we have

An = (UDU∗)n = UDnU∗

with

Dn =


λn1

. . .
λnN

 ,
hence

N∑
i=1

λni = Tr(Dn) = Tr(UDnU∗) = Tr(An)

and thus
1
N

N∑
i=1

λni = 1
N

Tr(An).

0.10 Notation

We denote by tr = 1
N

Tr the normalized trace of matrices, i.e.,

tr
(
(aij)Ni,j=1

)
= 1
N

N∑
i=1

aii.

So we are claiming that for our matrices we typically have that

tr(AnN) N→∞−−−→
∫
xn dµW (x).
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0.11 Choice of scaling
Note that we need to choose the right scaling in N for the existence of the limit
N →∞. For the case aij ∈ {±1} with AN = A∗N we have

tr(A2
N) = 1

N

N∑
i,j=1

aij aji︸︷︷︸
=aij︸ ︷︷ ︸

=(±1)2=1

= 1
N
N2 = N.

Since this has to converge for N →∞ we should rescale our matrices

AN →
1√
N
AN ,

i.e., we consider matrices AN = (aij)Ni,j=1, where aij = ± 1√
N
. For this scaling we

claim that we typically have that

tr(AnN) N→∞−−−→
∫
xn dµW (x)

for a deterministic probability measure µW .

0.12 Definition
(1) The (standard) semicircular distribution µW is the measure on [−2, 2] with

density
dµW (x) = 1

2π
√

4− x2 dx.

−2 2

1
π

(2) The Catalan numbers (Ck)k≥0 are given by

Ck = 1
k + 1

(
2k
k

)
.

They look like this: 1, 1, 2, 5, 14, 42, 132, . . .
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0.13 Theorem
Theorem. (1) (i) The Catalan numbers satisfy the following recursion:

Ck =
k−1∑
l=0

ClCk−l−1 (k ≥ 1)

(ii) The Catalan numbers are uniquely determined by this recursion and by
the initial value C0 = 1.

(2) The semicircular distribution µW is a probability measure, i.e.,

1
2π

2∫
−2

√
4− x2 dx = 1

and its moments are given by

1
2π

2∫
−2

xn
√

4− x2 dx =

0, n odd,
Ck, n = 2k even.

0.14 Type of convergence
So we are still claiming that typically

tr(A2
N)→ 1,

tr(A4
N)→ 2,

tr(A6
N)→ 5,

tr(A8
N)→ 14,

tr(A10
N )→ 42,

and so forth. But what do we mean by “typically”? The mathematical expression
for this is “almost surely”, but for now let us look on the more intuitive “convergence
in probability” for

tr(A2k
N )→ Ck.

Denote by ΩN the set of our considered matrices, that is

ΩN =
{
AN = 1√

N
(aij)Ni,j=1 |AN = A∗N and aij ∈ {±1}

}
.
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Then convergence in probability means that for all ε > 0 we have

#
{
AN ∈ ΩN

∣∣∣ ∣∣∣tr (A2k
N

)
− Ck

∣∣∣ > ε
}

#ΩN

= P
(
AN

∣∣∣ ∣∣∣tr (A2k
N

)
− Ck

∣∣∣ > ε
)

N→∞−−−→ 0. (?)

How can we show (?)?

(1) First show the weaker form of convergence in average, i.e.,
∑
AN∈ΩN tr

(
A2k
N

)
#ΩN

= E
[
tr
(
A2k
N

)]
N→∞−−−→ Ck.

(2) Show that with high probability the derivation from the average will become
small as N →∞.

We will first consider step (1); (2) is a concentration phenomenon and will be treated
later.

0.15 Remark
Note that

1
N

N∑
i=1

f(λi) N→∞−−−→
∫
R

f(x) dµW (x) (?)

is actually a statement on convergence of measures, since

1
N

N∑
i=1

f(λi) =
∫
R

f(x) dµN(x)

for the empirical spectral measure or density of states

µN = 1
N

(δλ1 + · · ·+ δλN ) ,

where δλ is the Dirac measure

δλ(E) =

0, λ 6∈ E,
1, λ ∈ E.
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Hence (?) says that ∫
R

f(x) dµN(x) N→∞−−−→
∫
R

f(x) dµW (x).

If we require this for sufficiently many f , this is a kind of convergence µN → µW
of measures. We will need to understand such convergence better and develop tools
(Cauchy or Stieltjes transform) to deal with them.

18



1 The Stieltjes transform

1.1 Weak and vague convergence
Denote by C0(R) the set of continuous functions on R vanishing at zero, that is

C0(R) =
{
f ∈ C(R)

∣∣∣ lim
|x|→∞

f(x) = 0
}
.

Also, denote by Cb(R) the set of continuous, bounded functions on R.

Definition 1.1. (a) We say that µn converges vaguely to µ if∫
f(x) dµn(x) n→∞−−−→

∫
f(x) dµ(x)

for every f ∈ C0(R). We write µn v−→ µ.

(b) We say that µn converges weakly to µ if∫
f(x) dµn(x) n→∞−−−→

∫
f(x) dµ(x)

for every f ∈ Cb(R). We write µn w−→ µ.

Some properties:

(1) If µn is a probability measure and µn w−→ µ then µ is also a probability measure.
Indeed,

1 =
∫
R

1 dµn(x) n→∞−−−→
∫
R

1 dµ(x) = µ(R).

(2) If µN is a probability measure and µn v−→ µ then µ is not necessarily a proba-
bility measure. Examples:
(i) For µn = δn and f ∈ C0(R) we have∫

f(x) dδn(x) = f(n) n→∞−−−→ 0,

hence the vague limit of the δn is not a probability measure.
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(ii) Let ν be a probability measure, let α ∈ (0, 1) and define

µn = (1− α)ν + αδn.

Then (µn) is a sequence of probability measures and for f ∈ C0(R) we
have ∫

f dµn = (1− α)
∫
f dν + αf(n) n→∞−−−→ (1− α)

∫
f dν.

Hence µn v−→ να = (1− α)ν with

να(R) =
∫

dνα = (1− α)
∫

dν = 1− α < 1.

1.2 When does convergence of moments imply
weak convergence?

Theorem 1.2. Let µ be a measure on R. Set mk =
∫
R x

k dµ(x) for all k ∈ N. If

(i) lim supk→∞ 1
k
|mk|

1
k <∞

or if

(ii) mk <∞ for all k ∈ N and ∑∞k=1 (m2k)−
1

2k =∞ (Carleman’s condition)

then µ is the only measure on R with (mk)k as its moments. In this case, we say
that µ is characterized by its moments.

Example. If a probability measure µ is compactly supported, i.e., if there exists an
R > 0 such that µ ([−R,R]) = 1, then µ is characterized by its moments, since

|mk| =

∣∣∣∣∣∣
R∫
R

xk dµ(x)

∣∣∣∣∣∣ ≤ Rk
∫

dµ(x) = Rk

and hence
1
k
|mk|

1
k ≤ 1

k
R

k→∞−−−→ 0.

Theorem 1.3. Let µ, µ1, µ2, . . . be probability measures on R. If

(i)
∫
R x

k dµn(x) n→∞−−−→
∫
R x

k dµ(x) (convergence of moments)
holds for any k ≥ 0, and
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(ii) µ is characterized by its moments,

then µn w−→ µ.

For a Wigner matrix, it is enough to consider the moments and then prove conver-
gence to the Catalan numbers in order to conclude that µn w−→ µ, where µ is the
semicircle measure.

“This method is combinatorial.”

1.3 The Cauchy-Stieltjes transform
In this section, we shall make an introduction to the analytic approach of proving
the Wigner theorem via the Cauchy-Stieltjes transform.

Definition 1.4. Let µ be a positive finite measure on R. The Stieltjes transform
gµ of µ is defined by

gµ : C+ → C, z 7→ gµ(z) =
∫
R

1
λ− z

dµ(λ),

where C+ = {z ∈ C | Im(z) > 0}.

Let z = x+ iy with x, y ∈ R. Then

λ 7→ 1
λ− z

= 1
λ− x− iy

(λ− x) + iy

(λ− x) + iy

= λ− x
(λ− x)2 + y2 + i

y

(λ− x)2 + y2

= Re
( 1
λ− z

)
+ Im

( 1
λ− z

)
is continuous and bounded. As µ is finite, gµ(z) is well-defined over C+.
Example. (i) If µ = δ0 then gµ(z) = −1

z
and if µ = δx then gµ(z) = − 1

x−z .

(ii) Let µN = 1
N

∑N
i=1 δλi , where λi are the eigenvalues of a symmetric matrix A.

Then
gµN (z) = 1

N
Tr(A− zI)−1 = tr(A− zI)−1,

where (A− zI)−1 is the so-called resolvent of A.
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1.4 Weak convergence iff convergence of Stieltjes
transform

Theorem 1.5. Let ν, ν1, ν2, . . . be probability measures. Then:

νn
w−→ ν ⇔ gνn(z) n→∞−−−→ gν(z) for all z ∈ C+

1.5 Properties of the Stieltjes transform
Proposition 1.6. Let µ be a finite measure. Then

(i) |gµ(z)| ≤ µ(R)
Im(z) for any z ∈ C+,

(ii) gµ is analytic over C+,

(iii) Im(gµ(z)) > 0 for all z ∈ C+,

(iv) Im(zgµ(z)) ≥ 0 if suppµ ⊂ R+,

(v) limy→∞ iygµ(iy) = −µ(R).

1.6 The Stieltjes transform seen as a moment
generating function

Suppose that µ is compactly supported on [−R,R]. Using the geometric series
expansion, we have

gµ(z) =
R∫
−R

1
λ− z

dµ(λ) =−
R∫
−R

∞∑
n=0

λn

zn+1 dµ(λ)

= −
∞∑
n=0

1
zn+1

R∫
−R

λn dµ(λ) = −
∞∑
n=0

mn

zn+1

for z ∈ C+ with |z| > R. So in a neighborhood of ∞, gµ is a power series in 1
z

whose coefficients are the moments of µ. This can be useful in computing Stieltjes
transforms. As the Stieltjes transform is analytic over C+, we only need to compute
it in some open set with an accumulation point to determine its value over C+.
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1.7 Stieltjes transform characterizes measure
Theorem 1.7 (Inversion formula). Let µ be a measure. For all a, b ∈ R we have

1
2 [µ({a}) + µ({b})] + µ(]a, b[) = lim

y↓0

1
π

b∫
a

Im gµ(x+ iy) dx.

Proof. We know that

Im gµ(x+ iy) =
∫
R

Im 1
λ− x− iy

dµ(λ) =
∫
R

y

(λ− x)2 + y
dµ(λ).

Thus,

b∫
a

Im gµ(x+ iy) dx =
∫
R

b∫
a

y

(λ− x)2 + y
dx dµ(λ) =

∫
R

f(y, λ) dµ(λ),

where
f(y, λ) = arctan b− λ

y
− arctan a− λ

y
.

Note that |f(y, λ)| ≤ π for all y > 0, λ ∈ R and we have f(y, λ) y→0+
−−−→ f(λ) with

f(λ) =


0, λ 6∈ [a, b],
π
2 , λ ∈ {a, b},
π, λ ∈ (a, b).

Then, by the dominated convergence theorem we infer

lim
y↓0

1
π

b∫
a

Im gµ(x+ iy) dx = lim
y↓0

1
π

∫
R

f(y, λ) dµ(λ)

= 1
π

∫
R

f(λ) dµ(λ)

= 1
2 (µ{a}+ µ{b}) +

b∫
a

dµ(λ).
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2 Gaussian random matrices:
Wick formula and combinatorial
proof of Wigner’s semicircle

We want to prove convergence of our random matrices to the semicircle by showing

E
[
trA2k

N

]
N→∞−−−→ Ck.

Up to now our matrices were of the form AN = 1√
N

(aij)Ni,j=1 with aij ∈ {−1, 1}. We
now let the entries aij be Gaussian (normal) random variables.

Definition 2.1. A standard Gaussian (or normal) random variable X is a real-
valued Gaussian random variable with mean 0 and variance 1, i.e., it has distribution

P [t1 ≤ X ≤ t2] = 1√
2π

t2∫
t1

e−
t2
2 dt

and hence its moments are given by

E [Xn] = 1√
2π

∫
R

tne−
t2
2 dt.

Proposition 2.2. The moments of a standard Gaussian random variable are of the
form

1√
2π

∞∫
−∞

tne−
t2
2 dt =

0, n odd,
(n− 1)!!, n even,

where
m!! = m(m− 2)(m− 4) · · · 5 · 3 · 1.

Exercise. Show this by partial integration.
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Remark 2.3. It is surprising that those integrals evaluate to natural numbers. They
actually count interesting combinatorial objects,

E
[
X2k

]
= #{pairings of 2k elements}.

Definition 2.4. (i) For a natural number n ∈ N we put [n] = {1, . . . , n}.

(ii) A pairing π of [n] is a decomposition of [n] into disjoints subsets of size 2,
i.e., π = {V1, . . . , Vk} such that for all i, j = 1, . . . , k with i 6= j, we have:
• Vi ⊂ [n]
• #Vi = 2
• Vi ∩ Vj = ∅
• ⋃ki=1 Vi = [n]

Note that necessarily k = n
2 .

(iii) The set of all pairings of [n] is denoted by

P2(n) = {π |π is a pairing of [n]}.

Proposition 2.5. (i) We have

#P2(n) =

0, n odd,
(n− 1)!!, n even.

(ii) Hence for a standard Gaussian variable X we have

E [Xn] = #P2(n).

Proof. “(i)” Count elements in P2(n) in a recursive way. Choose the pair which
contains the element 1, for this we have n − 1 possibilities. Then we are left with
choosing a pairing of the remaining n− 2 numbers. Hence we have

#P2(n) = (n− 1) ·#P2(n− 2).

Iterating this and noting that #P2(1) = 0 and #P2(2) = 1 gives the desired result.

“(ii)” Follows from (i) and Proposition 2.2.
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Example 2.6. Usually we draw our partitions by connecting the elements in each
pair. Then E [X2] = 1 corresponds to the single partition

1 2

and E [X4] = 3 corresponds to the three partitions

1 2 3 4 ,
1 2 3 4

,
1 2 3 4

.

Remark 2.7 (Independent Gaussian random variables). We will have several Gaus-
sian random variables X, Y and have to calculate their joint moments. The random
variables are independent, this means that their joint distribution is the product
measure of the single distributions,

P [t1 ≤ X ≤ t2, s1 ≤ Y ≤ s2] = P [t1 ≤ X ≤ t2]P [s1 ≤ Y ≤ s2] ,

so in particular, for the moments we have

E [XnY m] = E [Xn]E [Y m]
= #{pairings of X · · ·X︸ ︷︷ ︸

n

} ·#{pairings of Y · · ·Y︸ ︷︷ ︸
m

}

= #{pairings of X · · ·X︸ ︷︷ ︸
n

Y · · ·Y︸ ︷︷ ︸
m

which connect X with X and Y with Y }.

Example. We have E [XXY Y ] = 1 since the only possible pairing is

X X Y Y .

On the other hand, E [XXXYXY ] = 3 since we have the following three possible
pairings:

X X X Y X Y

X X X Y X Y

X X X Y X Y
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Consider x1, . . . , xn ∈ {X, Y }. Then we still have

E [x1 . . . xn] = #{pairings which connect X with X and Y with Y }.

Can we decide in a more abstract way whether xi = xj or xi 6= xj? Yes, we can read
this from the corresponding second moment, since

E [xixj] =

E [x2
i ] = 1, xi = xj,

E [xi]E [xj] = 0, xi 6= xj.

Hence we have:

E [x1 . . . xn] =
∑

π∈P2(n)

∏
(i,j)∈π

E [xixj]

Theorem 2.8 (Wick 1950, physics; Isserlis 1918, statistics). Let Y1, . . . , Yp be inde-
pendent standard Gaussian random variables and consider x1, . . . , xn ∈ {Y1, . . . , Yp}.
Then we have the Wick formula

E [x1 . . . xn] =
∑

π∈P2(n)
Eπ [x1 . . . xn] ,

where, for π ∈ P2(n), we use the notation

Eπ [x1 . . . xn] =
∏

(i,j)∈π
E [xixj] .

Note that the Wick formula is linear in the xi, hence it remains valid if we replace
the xi by linear combinations of the xj. In particular, we can go over to complex
Gaussian variables.

Definition 2.9. A standard complex Gaussian random variable Z is of the form

Z = X + iY√
2

,

where X and Y are independent standard real Gaussian variables.

Remark 2.10. Let Z be a standard complex Gaussian, i.e., Z = X+iY√
2 . Then we have
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Z = X−iY√
2 and the first and second moments are given by

E [Z] = 0,
E
[
Z
]

= 0,

E
[
Z2
]

= E [ZZ] = 1
2 [E [XX]− E [Y Y ] + i (E [XY ] + E [Y X])] = 0,

E
[
Z

2] = 0,

E
[
|Z|2

]
= E

[
ZZ

]
= 1

2 [E [XX] + E [Y Y ] + i (E [Y X]− E [Y X])] = 1.

Hence, for z1, z2 ∈ {Z,Z} and π = z1 z2 we have

E [z1z2] =

1, π connects Z with Z,
0, π connects (Z with Z) or (Z with Z).

Theorem 2.11. Let Z1, . . . , Zp be independent standard complex Gaussian random
variables and consider z1, . . . , zn ∈ {Z1, Z1, . . . , Zp, Zp}. Then we have the Wick
formula

E [z1 · · · zn] =
∑

π∈P2(n)
Eπ [z1, . . . , zn]

= #{pairings of [n] which connect Zi with Zi}.

Definition 2.12. A Gaussian random matrix is of the form AN = 1√
N

(aij)Ni,j=1,
where
• AN = A∗N , i.e., aij = aji for all i, j,

• {aij | i ≥ j} are independent,

• each aij is a standard Gaussian random variable, which is complex for i 6= j
and real for i = j.

Remark 2.13. (i) More precisely, we should address the above as selfadjoint
Gaussian random matrices.

(ii) Another common name for those random matrices is GUE, which stands for
Gaussian unitary ensemble. “Unitary” corresponds here to the fact that
the entries are complex, since such matrices are invariant under unitary trans-
formations. There are also real and quaternionic versions, Gaussian orthog-
onal ensembles (GOE) and Gaussian symplectic ensembles (GSE).
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(iii) Note that we can also express this definition in terms of the Wick formula as

E
[
ai(1)j(1) · · · ai(n)j(n)

]
=

∑
π∈P2(n)

Eπ
[
ai(1)j(1), . . . , ai(n)j(n)

]
for all n and 1 ≤ i(1), j(1), . . . , i(n), j(n) ≤ N . Furthermore, the second
moments are given by

E [aijakl] = δilδjk.

Remark 2.14 (Calculation of E [tr(AmN)]). For our Gaussian random matrix we want
to calculate their moments

E [tr(AmN)] = 1
N

1√
N
m

N∑
i(1),...,i(m)=1

E
[
ai(1)i(2)ai(2)i(3) · · · ai(m)i(1)

]
.

Let us first consider small examples before we treat the general case:
(i)

E
[
tr(A2

N)
]

= 1
N2

N∑
i,j=1

E [aijaji]︸ ︷︷ ︸
=1

= 1
N2N

2 = 1 = C1

(ii) We consider the partitions

π1 = 1 2 3 4 , π2 =
1 2 3 4

, π3 =
1 2 3 4

.

With this, we have

E
[
tr(A4

N)
]

= 1
N3

N∑
i,j,k,l=1

E [aijajkaklali]︸ ︷︷ ︸
=Eπ1 [...]+Eπ2 [...]+Eπ3 [...]

and calculate
N∑

i,j,k,l=1
Eπ1 [aij, ajk, akl, ali] =

N∑
i,j,k,l=1
i=k

1 = N3,

N∑
i,j,k,l=1

Eπ2 [aij, ajk, akl, ali] =
N∑

i,j,k,l=1
j=l

1 = N3,

N∑
i,j,k,l=1

Eπ3 [aij, ajk, akl, ali] =
N∑

i,j,k,l=1
i=l,j=k,j=i,k=l

1 =
N∑
i=1

1 = N,
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hence
E
[
tr(A4

N)
]

= 1
N3

(
N3 +N3 +N

)
= 2 + 1

N2 ,

such that
lim
N→∞

E
[
tr(A4

N)
]

= 2 = C2.

(iii) In the general case we have

E
[
ai(1)i(2)ai(2)i(3) · · · ai(m)i(1)

]
=

∑
π∈P2(m)

Eπ
[
ai(1)i(2), ai(2)i(3), . . . , ai(m)i(1)

]
=

∑
π∈P2(m)

∏
(k,l)∈π

E
[
ai(k)i(k+1)ai(l)i(l+1)

]
.

We use the notation [i = j] = δij and, by identifying a pairing π with a
permutation π ∈ Sm via

(k, l) ∈ π ↔ π(k) = l, π(l) = k,

find that

E [tr(AmN)] = 1
Nm/2+1

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(k,l)∈π

E
[
ai(k)i(k+1)ai(l)i(l+1)

]

= 1
Nm/2+1

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

∏
k

[
i(k) = i(π(k) + 1︸ ︷︷ ︸

γπ(k)

)
]
,

where γ = (1, 2, . . . ,m) ∈ Sm is the shift by 1 modulo m. The above product
is different from 0 if and only if

i : [m]→ [N ]

is constant on the cycles of γπ ∈ Sm. Thus,

E [tr(AmN)] = 1
Nm/2+1

∑
π∈P2(m)

N#(γπ),

where #(γπ) is the number of cycles of the permutation γπ.

Theorem 2.15. Let AN be a Gaussian (GUE) random matrix. Then we have for
all m ∈ N,

E [tr(AmN)] =
∑

π∈P2(m)
N#(γπ)−m2 −1.
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Example 2.16. (i) All odd moments are zero, since P2(2k + 1) = ∅.

(ii) If m = 2, γ = (1, 2) and π = (1, 2) then γπ = id = (1)(2) such that #(γπ) = 2
and

#(γπ)− m

2 − 1 = 0.

Thus,
E
[
tr
(
A2
N

)]
= N0 = 1.

(iii) Let m = 4 and γ = (1, 2, 3, 4). Then we have

π γπ #(γπ)− 3 contribution
(1, 2)(34) (1, 3)(2)(4) 0 N0 = 1
(13)(24) (1, 4, 3, 2) −2 N−2 = 1

N2

(14)(23) (1)(2, 4)(3) 0 N0 = 1

such that
E
[
tr
(
A4
N

)]
= 2 + 1

N2 .

(iv) In the same way one can calculate that

E
[
tr
(
A6
N

)]
= 5 + 10 1

N2 ,

E
[
tr
(
A8
N

)]
= 14 + 70 1

N2 + 21 1
N4 .

(v) For m = 6 the following 5 pairings give contribution N0:

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6
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1 2 3 4 5 6

Those are non-crossing pairings, all other pairings π ∈ P2(6) have a crossing,
e.g.:

1 2 3 4 5 6

Definition 2.17. A pairing π ∈ P2(m) is non-crossing (NC) if there are no pairs
(i, k) and (j, l) in π with i < j < k < l.

i j k k
is not allowed!

We put
NC2(m) = {π ∈ P2(m) |π is non-crossing} .

Example 2.18. (i) NC2(2) = P2(2) = { }

(ii) NC2(4) = { , } and P2(4)\NC2(4) = { }

(iii) The 5 elements of NC2(6) are given in Example 2.16 (v), P2(6) contains 15
elements.

Remark 2.19. Note that NC-pairings have a recursive structure, which usually is
crucial for dealing with them.

(i) The first pair of π ∈ NC2(2k) must necessarily be of the form (1, 2l) and the
remaining pairs can only pair within {2, . . . , 2l− 1} or within {2l+ 1, . . . , 2l}.

1 2l. . . . . . . . . . . .

(ii) Iterating this shows that we must find in any π ∈ NC2(2k) at least one pair of
the form (i, i+ 1) with 1 ≤ i ≤ 2k− 1. Removing this pair gives a NC-pairing
of 2k − 2 points. This characterizes the NC-pairings as those pairings, which
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can be reduced to the empty set by iterated removal of pairs, which consist of
neighbors.

For example:

1 2 3 4 5 6 7 8
→

1 2 5 8
→ 1 8 → ∅

1 2 3 4 5 6
→

1 4 5 6
no further reduction possible!

Proposition 2.20. Consider m even and let π ∈ P2(m), which we identify with a
permutation π ∈ Sm. As before, γ = (1, 2, . . . ,m) ∈ Sm. Then we have:

(i) #(γπ)− m
2 − 1 ≤ 0 for all π ∈ P2(m).

(ii) #(γπ)− m
2 − 1 = 0 if and only if π ∈ NC2(m).

Proof. First we note that a pair (i, i + 1) in π corresponds to a fixed point of γπ.
More precisely, i + 1 π−→ i

γ−→ i + 1 and i π−→ i + 1 γ−→ i + 2. Hence γπ contains the
cycles (i+ 1) and (. . . , i, i+ 2, . . . ).

This implication also goes in the other direction: If γπ(i+1) = i+1 and γπ(i) = i+2
then π(i + 1) = γ−1(i + 1) = i and π(i) = γ−1(i + 2) = i + 1. Hence we have the
cycle (i, i+ 1) in π.

If we have (i, i + 1) in π, we can remove the points i and i + 1, yielding another
pairing π̃. By doing so, we remove in γπ the cycle (i+1) and we remove in the cycle
(. . . , i, i+ 2, . . . ) the point i, yielding γπ̃. We reduce m by 2 and #(γπ) by 1.

If π is NC we can iterate this until we arrive at π̃ with m = 2. Then we have
π̃ = (1, 2) and γ = (1, 2) such that γπ̃ = (1)(2) and #(γπ̃) = 2. If m = 2k we did
k − 1 reductions where we reduced the number of cycles by 1 and at the end we
remain with 2 cycles, hence

#(γπ) = (k − 1) · 1 + 2 = k + 1 = m

2 + 1.

34



Here is an example for this:

π =
1 2 3 4 5 6 7 8

remove−−−−→
(3,4),(6,7)

1 2 5 8 remove−−−−→
(2,5)

1 8

γπ = (1)(268)(35)(4)(7) −→ (1)(28)(5) −→ (1)(8)

For a general π ∈ P2(m) we remove cycles (i, i + 1) as long as possible. If π is
crossing we arrive at a pairing π̃, where this is not possible anymore. It suffices to
show that such a π̃ ∈ P2(m) satisfies #(γπ̃) − m

2 < 0. But since π̃ has no cycle
(i, i+ 1), γπ̃ has no fixed point. Hence each cycle has at least 2 elements, thus

#(γπ̃) ≤ m

2 <
m

2 + 1.

Note that in the above arguments, (1,m) also counts as a pair of neighbors for a
π ∈ P2(m), in order to have the characterization of fixed points right. Hence, when
reducing a general pairing to one without fixed points we have also to remove such
cyclic neighbors as long as possible.
Theorem 2.21 (Wigner’s semicircle law for GUE, averaged version). Let AN be a
Gaussian (GUE) N ×N random matrix. Then we have for all m ∈ N:

lim
N→∞

E [tr (AmN)] = 1
2π

2∫
−2

xm
√

4− x2 dx

Proof. This is true for odd m, since then both sides are equal to zero. Consider
m = 2k even. Then Theorem 2.15 and Proposition 2.20 show that

lim
N→∞

E [tr (AmN)] =
∑

π∈P2(m)
lim
N→∞

N#(γπ)−m2 −1 =
∑

π∈NC2(m)
1 = #NC2(m).

Since the moments of the semicircle are given by the Catalan numbers, it remains
to see that

#NC2(2k) != Ck.

We now count dk = #NC2(2k) according to the recursive structure of NC-pairings
as in 2.19 (i). Namely, we can identify π ∈ NC2(2k) with {(1, 2l)} ∪ π0 ∪ π1, where
l ∈ {1, . . . , 2k − 1}, π0 ∈ NC2(2(l − 1)) and π1 ∈ NC2(2(k − l)). Hence

dk =
k∑
l=1

dl−1dk−l, where d0 = 1.

This is the recursion for the Catalan numbers, whence dk = Ck for all k ∈ N.
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Remark 2.22. (i) One can refine

#(γπ)− m

2 − 1 ≤ 0

to
#(γπ)− m

2 − 1 = −2g(π)

for g(π) ∈ N0. This g has the meaning that it is the minimal genus of a
surface on which π can be drawn without crossings. NC pairings are also
called planar, they correspond to g = 0. Theorem 2.15 is usually addressed
as genus expansion,

E [tr(AmN)] =
∑

π∈P2(m)
N−2g(π).

(ii) For example, (1, 2)(3, 4) ∈ NC2(4) has g = 0, but the crossing pairing (1, 3)(2, 4) ∈
P2(4) has genus g = 1. It has a crossing in the plane but this can be avoided
on a torus.

4 2

3

1

4 2

3

1

(iii) If we denote
εg(k) = # {π ∈ P2(2k) |π has genus g}

then the genus expansion can be written as

E
[
tr(A2k

N )
]

=
∑
g≥0

εg(k)N−2g.

We know that
εg(0) = Ck = 1

k + 1

(
2k
k

)
,

but what about the εg(k) for g > 0? There does not exist an explicit formula
for them, but Harer and Zagier have shown in 1986 that

εg(k) = (2k)!
(k + 1)!(k − 2g)! · λg(k),
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where λg(k) is the coefficient of x2g in
(

x
2

tanh x
2

)k+1

.

We will come back later to this statement of Harer and Zagier.
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3 Wigner matrices: Combinatorial
proof of Wigner’s semicircle law

Definition 3.1. Let µ be a probability distribution on R. A corresponding Wigner
random matrix is of the form AN = 1√

N
(aij)Ni,j=1, where

• AN = A∗N , i.e., aij = aji for all i, j,

• {aij | i ≥ j} are independent,

• each aij has distribution µ.

Remark 3.2. (i) In our combinatorial setting we will assume that all moments of
µ exists, that the first moment is 0 and the second moment will be normalized
to 1. In an analytic setting one can deal with more general situations: Usually
only the existence of the second moment is needed and one can also allow
non-vanishing mean.

(ii) Often one also allows different distributions for the diagonal and for the off-
diagonal entries.

(iii) Even more general, one can give up the assumption of identical distribution
of all entries and replace this by uniform bounds on the moments.

(iv) Consider a Wigner matrix AN = 1√
N

(aij)Ni,j=1, where µ has all moments and∫
R

x dµ(x) = 0,
∫
R

x2 dµ(x) = 1.

Then

E [tr(AmN)] = 1
N1+m

2

N∑
i1,...,im=1

E [ai1i2ai2i3 · · · aimi1 ]

= 1
N1+m

2

∑
σ∈P(m)

∑
i : [m]→[N ]

ker i=σ

E [σ] .

39



Definition 3.3. (i) A partition σ of [n] is a decomposition of [n] into disjoint,
non-empty subsets (of arbitrary size), i.e., σ = {V1, . . . , Vk}, where
• Vi ⊂ [n] for all i,
• Vi 6= ∅ for all i,
• Vi ∩ Vj = ∅ for all i 6= j,
• ⋃ki=1 Vi = [n].

The Vi are called blocks of σ. The set of all partitions of [n] is denoted by

P(n) = {σ |σ is a partition of [n]} .

(ii) For a multiindex i = (i1, . . . , im) we denote by ker i its kernel, this is the
partition σ ∈ P(m) such that we have ik = il if and only if k and l are in the
same block of σ.
If we identify i with a function i : [m] → [N ] via i(k) = ik then we can also
write

ker i =
{
i−1(1), i−1(2), . . . , i−1(N)

}
,

where we discard all empty sets.

Example 3.4. For i = (1, 2, 1, 3, 2, 4, 2) we have

1 2 1 3 2 4 2

such that
ker i = {(1, 3), (2, 5, 7), (4), (6)} ∈ P(7).

Remark 3.5. The relevance of this kernel in our setting is the following:
For i = (i1, . . . , im) and j = (j1, . . . , jm) with ker i = ker j we have

E [ai1i2ai2i3 · · · aimi1 ] = E [aj1j2aj2j3 · · · ajmj1 ] .

For example, for i = (1, 1, 2, 1, 1, 2) and j = (2, 2, 7, 2, 2, 7) we have

ker i =
1 2 3 4 5 6

= ker j

such that

E [a11a12a21a11a12a21] = E
[
a2

11

]
E
[
a4

12

]
= E

[
a2

22

]
E
[
a4

27

]
= E [a22a27a72a22a27a72] .
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We denote this common value by
E [σ] = E [ai1i2ai2i3 · · · aimi1 ]

if ker i = σ. Thus we get:

E [tr(AmN)] = 1
N1+m

2

∑
σ∈P(m)

E [σ] ·# {i : [m]→ [N ] | ker i = σ}

Definition 3.6. For σ = {V1, . . . , Vk} ∈ P(m) we define a corresponding graph Gσ
as follows: The vertices of Gσ are given by the blocks Vp of σ and there is an edge
betwees Vp and Vq if there is an r ∈ [m] such that, modulo m, r ∈ Vp and r+ 1 ∈ Vq.
Another way of saying this is that we start with a graph with vertices 1, 2, . . . ,m and
edges (1, 2), (2, 3), (3, 4), . . . , (m− 1,m), (m, 1) and then identify vertices according
to the blocks of σ. We keep loops, but erase multiple edges.

Example 3.7. (i) σ = {(1, 3), (2, 5), (4)} =

1 = 3

2 = 54
Gσ =

(ii) σ = {(1, 5), (2, 4), (3)} =

1 = 5

2 = 43
Gσ =

(iii) σ = {(1, 3), (2), (4)} =

1 = 3

42
Gσ =
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The term E [ai1i2ai2i3 · · · aimi1 ] corresponds to a walk in Gσ, with σ = ker i, along the
edges with steps

i1 → i2 → i3 → · · · → im → i1.

Hence we are using each edge in Gσ at least once. Note that different edges in Gσ
correspond to independent random variables. Hence, if we use an edge only once in
our walk, then E [σ] = 0, because the expectation factorizes into a product with one
factor being the first moment of aij, which is assumed to be zero. Thus, every edge
must be used at least twice, but this implies

# edges in Gσ ≤
# steps in the walk

2 = m

2 .

Since the number of i with the same kernel is

# {i : [m]→ [N ] | ker i = σ} = N(N − 1)(N − 2) · · · (N −#σ + 1),

where #σ is the number of blocks in σ, we finally get

E [tr (AmN)] = 1
N1+m

2

∑
σ∈P(m)

#E(Gσ)≤m2

E [σ]N(N − 1)(N − 2) · · · (N −#σ + 1)︸ ︷︷ ︸
∼N#σ for N→∞

. (?)

We will now use the following well-known basic result from graph theory.

Proposition 3.8. Let G = (V,E) be a connected finite graph with vertices V and
edges E. Note that we allow loops and multi-edges. Then we have that

#V ≤ #E + 1

and we have equality if and only if G is a tree, i.e., a connected graph without cycles.

Theorem 3.9 (Wigner’s semicircle law for Wigner matrices, averaged version). Let
AN be a Wigner matrix corresponding to µ, which has all moments, with mean 0
and second moment 1. Then we have for all m ∈ N:

lim
N→∞

E [tr (AmN)] = 1
2π

2∫
−2

xm
√

4− x2 dx.

Proof. From (?) we get

lim
N→∞

E [tr (AmN)] =
∑

σ∈P(m)
E [σ]N#V (Gσ)−m2 −1.

42



In order to have E [σ] 6= 0, we can restrict to σ with #E(Gσ) ≤ m
2 , which by

Proposition 3.8 implies that

#V (Gσ) ≤ #E(Gσ) + 1 ≤ m

2 + 1.

Hence all terms converge and the only contribution in the limit N →∞ comes from
those σ, where we have equality, i.e.,

#V (Gσ) = #E(Gσ) + 1 = m

2 + 1.

Thus, Gσ must be a tree and in our walk we use each edge exactly twice (necessarily
in opposite directions). For such a σ we have E [σ] = 1, such that

lim
N→∞

E [tr (AmN)] = # {σ ∈ P(m) | Gσ is a tree} .

We will check in an exercise that the latter number is also counted by the Catalan
numbers.
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4 Semicircle law for GOE via the
resolvent method

Recall that a GOE is a symmetric matrix AN = 1√
N

(aij)Ni,j=1 such that (aij)j≤i are
independent identically distributed real Gaussian random variables with mean 0 and
second moments σ2. Furthermore, the empirical spectral measure was given by

µN = 1
N

N∑
i=1

δλi ,

where λ1, . . . , λN are the eigenvalues of AN , and we know that

µN
w−→ µ (almost surely), (?)

where µ is the semicircle with density

1
2πσ2

√
4σ2 − x2 dx.

In this chapter, we shall prove (?) via the resolvent method (Stieltjes transform).
This is equivalent to proving that for all z ∈ C+,

gµN (z) N→∞−−−→ g(z) (almost surely),

where g is the Stieltjes transform of µ given by

g(z) = −z +
√
z2 − 4σ2

2σ2 .

By Problem 5, g satisfies the quadratic equation

g(z) = −1
z
− 1
z
σ2 (g(z))2 .

It is typical for such problems to do the following:
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Step 1: (Omitted for now) Prove that, almost surely, gAN (z) asymptotically behaves
as E [gAN (z)], i.e, for all z ∈ C+,

|gAN (z)− E [gAN (z)]| N→∞−−−→ 0 (almost surely),

via concentration inequalities.

Step 2: (Aim of this chapter) Prove for all z ∈ C+ that

E [gAN (z)] N→∞−−−→ g(z).

For a selfadjoint matrix AN ,

gAN (z) = 1
N

Tr (AN − zI)−1 = tr (AN − zI)−1 .

We will look at the matrix AN as a matrix-valued mapping of its entries, i.e., we
define the mapping

A : Rm →MN(R), a 7→ A(a) = AN .

Denote by
G(a) = (A(a)− zI)−1

the resolvent matrix G of A.

Lemma 4.1.
∂G

∂aij
(a) = −G(a)

(
∂A

∂aij
(a)
)
G(a)

Proof. Differentiate both sides of

G(A− zI) = I

to obtain

0 = ∂

∂aij
[G(A− zI)] = ∂G

∂aij
(A− zI) +G

∂A

∂aij

such that
∂G

∂aij
(A− zI) = −G ∂A

∂aij

and hence
∂G

∂aij
= −G ∂A

∂aij
G.
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In particular, we have the Wigner matrix

A : RN(N+1)/2 →MN(R), a = (aij)1≤j≤i≤N 7→ A(a),

where

[A(a)]ij = 1√
N

aij, j ≤ i,

aji, j ≥ i,

and for any i, j, k, [
∂G

∂akk

]
ij

= − 1√
N
GikGkj

and for k 6= l, [
∂G

∂akl

]
ij

= − 1√
N

(GikGlj +GilGkj) .

Definition 4.2. A k× 1-random vector X is said to be absolutely continuous if
the set of its values is continuous and for any [a, b] = [a1, b1]× · · · [ak, bk],

P [X ∈ [a, b]] =
b1∫
a1

· · ·
bk∫
ak

fX(x1, . . . , xk) dx1 · · · dxk.

The function fX : Rk → [0,∞) is called the joint probability density function
of X. Furthermore, we set

E [X] =


E [X1]

...
E [Xk]


and define the covariance matrix Σ by

Σ = E
[
(X − E [X]) (X − E [X])T

]
= E

[
XXT

]
− E [X]E [X]T .

Notice that Σ is positive semi-definite with rank 1 and

(Σ)ij = E
[
(Xi − E [Xi]) (Xj − E [Xj])T

]
= Cov(Xi, Xj).

Definition 4.3. (i) We say that an absolutely continuous k × 1-random vector
X is a multivariate Gaussian vector with mean E [X] = µ and covariance
matrix Σ if its joint probability density fX is given by

fX(x) = 1
(2π) k2 |Σ|

1
2

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
.

We write X ∼ N (µ,Σ).
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(ii) If µ = 0 and Σ = I we say that X is a standard Gaussian vector.

(iii) If µ = 0 and Σ = Iσ2 we set

dγσ2

X = 1
(2πσ2) k2

e−
1

2σ2
∑k

i=1 x
2
i dx1 · · · dxk

and
dγσ2

Xi
= 1√

2πσ2
e−

x2
i

2σ2 dxi.

Lemma 4.4. X is a Standard Gaussian vector if and only if X1, . . . , Xk are inde-
pendently identically distributed with X1 ∼ N (0, 1).

Proof. We have

dγσ2

X = 1
(2πσ2) k2

e−
1

2σ2
∑k

i=1 x
2
i dx1 · · · dxk

= 1√
2πσ2

e−
x2

1
2σ2 dx1 · · ·

1√
2πσ2

e−
x2
k

2σ2 dxk

= dγσ2

X1 · · · dγσ2

Xk

such that

P [a1 ≤ X1 ≤ b1, . . . , ak ≤ Xk ≤ bk] =
b∫
a

dγσ2

X

=
b1∫
a1

· · ·
bk∫
ak

dγσ2

X1 · · · dγσ2

Xk

= P [a1 ≤ X1 ≤ b1] · · ·P [ak ≤ Xk ≤ bk] .

Proposition 4.5 (Stein’s identity, “Gaussian integration by parts”). Let X be a
Gaussian vector with X ∼ N (0, σ2I). Let h : Rk → R be a function such that for
each i ∈ {1, . . . , k}, ∂ih is is continuous almost everywhere and E [|∂ih|] <∞. Then

E [Xih(X1, . . . , Xk)] = σ2E [∂ih(X1, . . . , Xk)] .
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Proof. For a Gaussian random variable Z ∼ N (0, σ2) and a continuously differen-
tiable function g with E [|g′(Z)|] <∞, we have, by an easy integration by parts,

E [Zg(Z)] = σ2E [g′(Z)] . (?)

So as Σ = σ2I, the Xi ∼ N (0, σ2) are independently identically distributed and we
calculate

E [Xih(X1, . . . , Xk)] =
∫
R

· · ·
∫
R

xih(x1, . . . , xk) dγσ2

X (x1, . . . , xk)

=
∫
R

· · ·
∫
R

k∏
j=1
j 6=i

dγσ2

Xj
(xj)

∫
R

xih(x1, . . . , xk) dγσ2

Xi
(xi)

(?)=
∫
R

· · ·
∫
R

k∏
j=1
j 6=i

dγσ2

Xj
(xj)

∫
R

∂ih(x1, . . . , xk) dγσ2

Xi
(xi)

= σ2
∫
R

· · ·
∫
R

∂ih(x1, . . . , xk) dγσ2

X1(x1) · · · dγσ2

X1(x1)

= σ2E [∂ih(X1, . . . , Xk)] .

Theorem 4.6. Let AN be a GOE matrix with aij ∼ N (0, σ2) . Then for all z ∈ C+,

E [gAN (z)]→ g(z),

where g is the Stieltjes transform of the semicircle distribution (of variance σ2) given
by

g(z) = −z +
√
z2 − 4σ2

2
and satisfying the quadratic equation

g(z) = −1
z
− σ2

z
g(z)2.

Proof. Just consider the case σ2 = 1. Then

E [gAN (z)] = E
[ 1
N

Tr(AN − zI)−1
]

= 1
N
E [TrGAn(z)] .
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Now, (AN − zI)GAn(z) = I such that

GAn(z) = −1
z
I + 1

z
AnGAN (z)

and hence, by Proposition 4.5 and Lemma 4.1,

1
N
E [TrGAn(z)] = −1

z
+ 1
zN

E [Tr(AnGAN (z))]

= −1
z

+ 1
zN

3
2

N∑
i,j=1

E [aijGji]

= −1
z

+ 1
zN

3
2

N∑
i,j=1

E
[
∂aijGji

]

= −1
z
− 1
zN2

N∑
i,j=1

E [−GjiGij −GjjGii]

= −1
z
− 1
zN2E

[
TrG2

]
− 1
z
E
[( 1
N

TrG
)2]

.

Since AN is selfadjoint, AN = U diag(λ1, . . . , λN)U∗ such that

G2
AN

= U diag
(( 1

λ1 − z

)2
, . . . ,

( 1
λN − z

)2)
U∗.

Furthermore, 1
|λi−z|2

≤ 1
|Im z|2 , for all i. Thus,

∣∣∣∣ 1
zN2E

[
TrG2

]∣∣∣∣ =
∣∣∣∣∣ 1
zN2

N∑
i=1

1
(λi − z)2

∣∣∣∣∣ ≤ 1
N2 |z| |Im z|2

N→∞−−−→ 0.

We shall admit for this lecture that the contribution of E
[(

1
N

TrG
)2
]
is the same

as that of E
[

1
N

TrG
]2

and thus we shall replace it. So,

1
N
E [TrGAN (z)] = −1

z
+ 1
z
E
[ 1
N

TrG
]2

+ EN ,

where EN is an error term that converges to 0 as N →∞. Thus,

1 + zE [gAN (z)] + E [gAN (z)]2 N→∞−−−→ 0
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for fixed z ∈ C+ and gN(z) = gAN (z) is contained in the closed ball of radius 1
|Im z| ,

which is compact. Then there exists a subsequence gNk(z) that converges to a limit
g(z) satisfying

1 + zg(z) + g(z)2 = 0.

This has the two solutions

g(z) = −z ±
√
z2 − 4

2 ,

but as the limit is a Stieltjes transform we find

g(z) = −z +
√
z2 − 4

2

and thus
E
[
gANk (z)

]
N→∞−−−→ g(z).

Since by the same argument any subsequence of gN(z) must contain a further sub-
sequence which converges to g(z), the whole sequence must converge to g(z).

4.1 Universality of Wigner’s semicircle law
Consider the selfadjoint N ×N -matrix

XN = 1√
N

Xij, j ≤ i,

Xji, j > i

Theorem 4.7. Let (Xij)i≤j≤i≤N be a family of independently identically distributed
random variables such that E [X11] = 0 and E [X2

11] = σ2. Then µXn
w−→ µσ almost

surely for N →∞, where µσ is the semicircle distribution. In terms of the Stieltjes
transform this means that for any z ∈ C+,

gXN (z) N→∞−−−→ gσ2(u) almost surely.

Remark 4.8. (i) Theorem 4.7 is a universality result in the sense that the limiting
distribution does not depend on the distribution of the entries, since only the
variance shows up in the limit. What really gives the semicircle distribution
is the structure of the matrix and the independence of the entries (up to
symmetry).
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(ii) Recall that E [gAN (z)] N→∞−−−→ gσ2(z) for GOE. Then proving the weak version
of Theorem 4.7 is equivalent to proving that for any z ∈ C+,

|E [gXN (z)]− E [gAN (z)]| N→∞−−−→ 0. (?)

Definition 4.9. Let A be an N ×N -matrix.

(i) The spectral norm of A is defined by

‖A‖ = max
{√

λ; λ is an eigenvalue of A∗A
}
.

If A is symmetric then

‖A‖ = max {|λ| ; λ is an eigenvalue of A} .

(ii) The Hilbert-Schmidt norm of A is given by

‖A‖2 =
 N∑
i,j=1
|Aij|2

 1
2

.

In addition to the usual norm properties, the Hilbert-Schmidt norm satisfies the
following:

Proposition 4.10. Let A,B ∈MN(C).

(i) |Tr(AB)| ≤ ‖A‖2 ‖B‖2

(ii) If U is a unitary matrix, i.e., UU∗ = U∗U = I, then

‖UA‖2 = ‖AU‖2 = ‖A‖2 .

(iii) If B is a normal matrix, i.e., B admits a spectral decomposition, then

max {‖AB‖2 , ‖BA‖2} ≤ ‖B‖ ‖A‖2 .

We will also use the following easy estimate.

Lemma 4.11. Let A be a selfadjoint matrix and consider its resolvent given by
GA(z) = (A− zI)−1 for z ∈ C\R. Then

‖GA(z)‖ ≤ 1
|Im z|

.

In order to prove (?) we shall use an approximation technique known as the Linde-
berg method (replacement trick).

52



4.2 What is the Lindeberg method?
Let (Xk)k≥1 and (Yk)k≥1 be two independent families of independently identically
distributed random variables such that

E [X1] = E [Y1] = 0 and E
[
X2

1

]
= E

[
Y 2

1

]
= σ2 <∞.

Let f : Rn → R be a three times differentiable function. Under what conditions can
we approximate E [f(X1, . . . , Xn)] by E [f(Y1, . . . , Yn)]?
In other words: What is the order of

|E [f(X1, . . . , Xn)]− E [f(Y1, . . . , Yn)]|?

To see that, we first need to introduce some notation. For any i = 1, . . . , n and
c ∈ [0, 1] let

Zi = (X1, . . . , Xi, Yi+1, . . . Yn) and Zc
i = (X1, . . . , Xi−1, cXi, Yi+1, . . . Yn).

Note that Z0
i = (X1, . . . , Xi−1, 0, Yi+1, . . . Yn), Zn = (X1, . . . , Xn) and Z0 = (Y1, . . . , Yn).

Now, calculate

E [f(X1, . . . , Xn)]− E [f(Y1, . . . , Yn)] = E [f(Zn)]− E [f(Z0)]

=
n∑
i=1

(E [f(Zi)]− E [f(Zi−1)]) .

We have written the difference as a telescopic sum of n terms and we shall control
each one of them. Notice that the only difference between Zi and Zi−1 is in the i-th
component. We fix i and consider

E [f(Zi)]− E [f(Zi−1)] = E [f(Zi)]− E
[
f(Z0

i )
]
−
(
E [f(Zi−1)]− E

[
f(Z0

i )
])
.

By using the Taylor expansion with Lagrange’s remainder for functions of several
variables we get

f(Zi) = f(Z0
i ) +Xi∂if(Z0

i ) + X2
i

2! ∂
2
i f(Z0

i ) + X3
i

3! ∂
3
i f(Zc1

i )

and
f(Zi−1) = f(Z0

i ) + Yi∂if(Z0
i ) + Y 2

i

2! ∂
2
i f(Z0

i ) + Y 3
i

3! ∂
3
i f(Zc2

i )
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for some c1, c2 ∈ (0, c). Hence

E [f(Zi)]− E [f(Zi−1)] = E
[
(Xi − Yi)∂if(Z0

i )
]

+ 1
2E

[
(X2

i − Y 2
i )∂2

i f(Z0
i )
]

+ 1
6E

[
X3
i ∂

3
i f(Zc1

i )
]
− 1

6E
[
Y 3
i ∂

3
i f(Zc2

i )
]
.

First, by independence,

E
[
(Xi − Yi)∂if(Z0

i )
]

= E [(Xi − Yi)]E
[
∂if(Z0

i )
]

= (E [Xi]− E [Yi])E
[
∂if(Z0

i )
]

= 0.

For the term of second order we also have, by independence and the assumption
about our variables,

E
[
(X2

i − Y 2
i )∂2

i f(Z0
i )
]

= E
[
(X2

i − Y 2
i )
]
E
[
∂2
i f(Z0

i )
]

= 0.

Thus,

|E [f(Zi)]− E [f(Zi−1)]| ≤ 1
6E

[∣∣∣X3
i ∂

3
i f(Zc1

i )
∣∣∣]+ 1

6E
[∣∣∣Y 3

i ∂
3
i f(Zc2

i )
∣∣∣]

Assume that
sup

i=1,...,n
sup
x∈Rn

∣∣∣∂3
i f(x)

∣∣∣ ≤ L3(f)

and
max
i=1,...,n

{
E
[∣∣∣X3

i

∣∣∣] ,E [∣∣∣Y 3
i

∣∣∣]} ≤ K <∞.

Then
|E [f(Zi)]− E [f(Zi−1)]| ≤ 1

3KL3(f)

such that
|E [f(Zn)]− E [f(Z0)]| ≤ 1

3KL3(f)n.

Theorem 4.12. Let f : Rn → R be a three times differentiable function such that

sup
i=1,...,n

sup
x∈Rn

∣∣∣∂3
i f(x)

∣∣∣ ≤ L3(f).

Let (Xk)k≥1 and (Yk)k≥1 be two independent families of independently identically
distributed random variables satisfying

E [X1] = E [Y1] = 0 and E
[
X2

1

]
= E

[
Y 2

1

]
= σ2 <∞
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and such that

max
i=1,...,n

{
E
[∣∣∣X3

i

∣∣∣] ,E [∣∣∣Y 3
i

∣∣∣]} ≤ K <∞. (C1)

Then
|E [f(X1, . . . , Xn)]− E [f(Y1, . . . , Yn)]| ≤ 1

3KL3(f)n.

We now want to apply this theorem to the Stieltjes transform. For any z ∈ C+, let

hz : R
N(N+1)

2 → C+, x = (xij)1≤j≤i≤N 7→
1
N

TrGz(x),

where Gz(x) = (A(x)− zI)−1 with

[A(x)]ij = 1
N

xij, j ≤ i,

xji, j > i.

We will see in the exercises that for some constant Cz depending on z,

L3(hz) ≤ Cz
1
N

5
2
.

Applying Theorem 4.12 to the real and imaginary parts of hz gives for all z ∈ C+,

|E [gXN (z)]− E [gAn(z)]| = |E [hz ((xij)1≤j≤i≤N)]− E [hz ((aij)1≤j≤i≤N)]|

≤ 1
3
Cz

N
5
2
L3(f)N(N + 1)

2

≤ 1
3Cz

1√
N

N→∞−−−→ 0,

thus completing the proof.
Remark 4.13. We shall see how one can truncate the matrix entries and consider
bounded random variables such that (C1) is satisfied.
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5 Concentration inequalities

5.1 Preliminaries
Recall the following definitions:

• A probability space (Ω,F ,P) is a measure space with P being a finite mea-
sure of mass 1. We interpret A ∈ F as events and P [A] as the probability that
A happens.

• Measurable functions X : (Ω,F)→ (R,B(R)) are called random variables.

• We say that A ∈ F holds with probability 1 or almost surely if P [A] = 1.

Let (Xn)n≥1 be a sequence of random variables. Then we consider the following
modes of convergence:

• Pointwise convergence: Xn(w)→ X(w) for any w ∈ Ω.

• Almost sure convergence: There is A ∈ F with P [A] = 1 such that
Xn(w)→ X(w) for all w ∈ A.

• Convergence in probability: For all ε > 0, P [|Xn −X| > ε]→ 0.

• Lp-convergence: Xn, X ∈ Lp and E [|Xn −X|p]→ 0.

• Convergence in distribution: P [Xn ≤ x] → P [X ≤ x] for all points x
where x 7→ P [X ≤ x] is continuous.
(This is equivalent to weak convergence.)

Lp Lq

in probability in distribution

almost sure

p>q
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Proposition 5.1 (Criterion for almost sure convergence). Xn → X almost surely
if and only if for every ε > 0

P
[

sup
k≥n
|Xk −X| ≥ ε

]
n→∞−−−→ 0.

Note that the event {supk≥n |Xk −X| ≥ ε} is the lim sup of the events En =
{|Xn −X| ≥ ε}; recall the general definition of the lim sup for sets as those ele-
ments which are in infinitely many of the sets, i.e.,

lim sup
n

En =
⋂
n

⋃
k≥n

Ek.

Theorem 5.2 (Borel-Cantelli lemma). Let (En)n be a sequence of events in Ω.

(i) (The first Borel-Cantelli lemma) If ∑∞n=1 P [En] <∞ then P [lim supnEn] = 0.

(ii) (The second Borel-Cantelli lemma) If ∑∞n=1 P [En] = ∞ and the (En)n are
independent then P [lim supnEn] = 1.

We would like to prove that for any z ∈ C+ and ε > 0,
∞∑
n=1

P
[∣∣∣gXn(z)− E

[
gXn(z)

]∣∣∣ ≥ ε
]
<∞

and then, using the first Borel-Cantelli lemma and Proposition 5.1, we prove that
for all z ∈ C+, ∣∣∣gXn(z)− E

[
gXn(z)

]∣∣∣→ 0 almost surely.

To do this, we need to find for each n ≥ 1 upper bounds on P
[∣∣∣gXn(z)− E

[
gXn(z)

]∣∣∣ ≥ ε
]
.

5.2 Concentration phenomena
The basic example for mass concentration is the Gaussian measure. As we can see,
the mass is concentrated around the mean 0 and decreases rapidly away from 0.
However, this is not true for all distributions.
Example 5.3. LetX ∼ Bernoulli(1

2), that is, X ∈ {0, 1} and P [X = 0] = P [X = 1] =
1
2 . Is this case,

E [X] = 0 · P [X = 0] + 1 · P [X = 1] = 1
2 .
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Theorem 5.4 (Strong law of large numbers). If (Xn)n≥1 is a sequence of indepen-
dently identically distributed random variables such that E [|X1|] <∞, then

1
n

n∑
i=1

Xi → E [X1] almost surely.

Remark 5.5. Let µN = 1
N

∑N
i=1 δλi , where λ1, . . . , λN are the eigenvalues of a GOE

matrix. Then Wigner’s semicircle law tells us that

µN
w−→ µ almost surely.

µN is a random empirical measure converging almost surely to a deterministic mea-
sure. It has the same flavor as the law of large numbers.

Proposition 5.6 (Markov’s inequality). Let X be a random variable taking non-
negative values. Then, for any t > 0,

P [X ≥ t] ≤ E [X]
t

.

Proof. As X ≥ 0,

E [X] =
∞∫
0

x dX(x) =
t∫

0

x dX(x) +
∞∫
t

x dX(x)

≥
∞∫
t

x dX(x) ≥ t

∞∫
t

dX(x) = t

∞∫
0

1{X≥t} dX(x) = tP [X ≥ t] .

Note that for any p ≥ 1,

P [|X| ≥ t] = P
[
|X|P ≥ tp

]
≤ E [|X|p]

tp
,

provided that E [|X|p] <∞.

Proposition 5.7 (Chebyshev’s inequality). Let X be a random variable with finite
mean µ and variance σ2. Then, for any t > 0,

P [|X − µ| ≥ t] ≤ σ2

t2
.
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Proof. We have

P [|X − µ| ≥ t] = P
[
|X − µ|2 ≥ t2

]
≤

E
[
|X − µ|2

]
t2

= Var [X]
t2

= σ2

t2
.

Example 5.8. Suppose that a post office handles on average 10000 letters a day. The
probability that it will handle at least 15000 letters the next day is

P [X ≥ 15000] ≤ E [X]
15000 = 10000

15000 = 2
3 .

However, if we know that the variance is 2000 letters, then

P [X ≥ 15000] = P [X − 10000 ≥ 5000] ≤ P [|X − 10000| ≥ 5000]

≤ Var [X]
(5000)2 = 1

12500 <<
2
3 .

We can see in the above example that if the random variable possesses more mo-
ments, then the tail inequalities can be improved to get better bounds for the tail
probabilities.

Definition 5.9. Let X be a random variable. Its moment generating function MX

is given by
MX : R→ R, MX(λ) = E

[
eλX

]
.

Remark 5.10. We have the following:

• MX(0) = E [e0] = 1.

• M ′
X(λ) = E

[
XeλX

]
, thus M ′

X(0) = E [X].

• M (k)
X (λ) = E

[
XkeλX

]
, thus M (k)

X (0) = E
[
Xk
]
.
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Example 5.11. Let X ∼ N (0, 1). Then

MX(λ) = E
[
eλX

]
=

∞∫
−∞

eλx
1√
2π
e−

x2
2 dx

= 1√
2π

∞∫
−∞

e−
1
2 (x2−2λx+λ2)e−

λ2
2 dx

= e
λ2
2

1√
2π

∞∫
−∞

e−
1
2 (x−λ)2 dx

︸ ︷︷ ︸
=1

= e
λ2
2 .

Lemma 5.12 (Chernoff bound). Let X be a real random variable. Then, for all
t ∈ R,

P [X ≥ t] ≤ inf
λ>0

{
e−λtMX(λ)

}
.

Proof. Let λ > 0, then

P [X ≥ t] = P [λX ≥ λt] = P
[
eλX ≥ eλt

]
≤

E
[
eλX

]
eλt

= e−λtMX(λ),

such that taking the infimum concludes the proof.

Remark 5.13. If X ∼ N (0, 1) then

P [X ≥ t] ≤ inf
λ>0

{
e−λte

λ2
2

}
= e−

t2
2 .

The Chernoff bound captures the correct behaviour of Gaussian tails.

Lemma 5.14 (Hoeffding’s lemma). Let X be a real centered random variable with
values in [a, b] almost surely. Then for any λ > 0,

MX(λ) ≤ e
λ2(b−a)2

8 .

Proof. Consider the convex function

f : x 7→ eλx.
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Recall that convex means that for any α ∈ (0, 1) and all y, z,

f(αy + (1− α)z) ≤ αf(y) + (1− α)f(z).

Fix x ∈ [a, b] and set α = b−x
b−a . Then

λx = b− x
b− a

λa+ x− a
b− a

λb

= α(λa) + (1− α)(λb)

such that

eλX ≤ b−X
b− a

eλa + X − a
b− a

eλb.

Notice that

0 ≤ E
[
eλX

]
≤ b

b− a
eλa − a

b− a
eλb = g(λ) = elog g(λ),

since E [X] = 0. Now put p = −a
b−a and u = (b− a)λ. Consider the function

ϕ(u) = log g(λ)
= log

[
(1− p)eλa + peλb

]
= log

[(
1− p+ peλ(b−a)

)
eλa
]

= λa+ log [1− p+ peu]
= −pu+ log [1− p+ peu] .

This function is smooth and thus, by Taylor’s theorem, for all u ∈ R there exists
v ∈ R such that

ϕ(u) = ϕ(0) + uϕ′(0) + u2

2 ϕ
′′(v).

Now calculate ϕ(0) = 0,
ϕ′(u) = −p+ peu

1− p+ peu

such that ϕ′(0) = −p+ p = 0 and

ϕ′′(u) = (1− p)peu
(1− p+ peu)2 ≤

1
4 .

Thus, ϕ(u) ≤ 1
8u

2, such that

MX(λ) ≤ eϕ(u) ≤ e
1
8u

2 = e
λ2(b−a)2

8 .
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Theorem 5.15 (Hoeffding’s inequality). Let X1, . . . , Xn be independent real random
variables such that Xi ∈ [ai, bi] almost surely for all i = 1, . . . , n. Then, for any
t > 0:

(i)

P
[

n∑
i=1

(Xi − E [Xi]) ≥ t

]
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)

(ii)

P
[

n∑
i=1

(Xi − E [Xi]) ≤ −t
]
≤ exp

(
−2t2∑n

i=1(bi − ai)2

)

(iii)

P
[ ∣∣∣∣∣

n∑
i=1

(Xi − E [Xi])
∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)

Proof. Set Sn = ∑n
i=1Xi. Then, by the Chernoff bound applied to Sn − E [Sn] we

get

P [Sn − E [Sn] ≥ t] ≤ inf
λ>0

{
e−λtE

[
eλ(Sn−E[Sn])

]}
.

Calculate, by Hoeffding’s lemma,

E
[
eλ(Sn−E[Sn])

]
= E

[
eλ
∑n

i=1(Xi−E[Xi])
]

= E
[

n∏
i=1

eλ(Xi−E[Xi])
]

=
n∏
i=1

E
[
eλ(Xi−E[Xi])

]
=

n∏
i=1

MXi−E[Xi](λ)

≤
n∏
i=1

e
λ2(bi−ai)

2
8

= e
λ2
8
∑n

i=1(bi−ai)2
.

Plugging this in the Chernoff bound yields

P [Sn − E [Sn] ≥ t] ≤ inf
λ>0

g(λ),
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where

g(λ) = exp
(
−λt+ λ2

8
∑
i

(bi − ai)2
)
.

Now, g′(λ) = 0 implies

λ = 4t∑n
i=1(bi − ai)2 .

Therefore

P [Sn − E [Sn] ≥ t] ≤ exp
(

−2t2∑n
i=1(bi − ai)2

)
.

To obtain the second inequality, it suffices to apply the first bound to −X1, . . . ,−Xn.
Finally, the third inequality follows from

P [Sn − E [Sn] ≥ t] = P [{Sn − E [Sn] ≥ t} ∪ {Sn − E [Sn] ≤ −t}]
≤ P [Sn − E [Sn] ≥ t] + P [Sn − E [Sn] ≤ −t]

≤ 2 exp
(

−2t2∑n
i=1(bi − ai)2

)
.

Example 5.16. Let X ∼ Bernoulli(p), that is, X ∈ {0, 1} and P [X = 1] = p and
P [X = 0] = 1 − p. Is this case, E [X] = p and Var [X] = p(1 − p). Let Xn =
1
n

∑n
i=1Xi, where the Xi are independent copies of X. Then E

[
Xn

]
= p and

Var
[
Xn

]
= Var

[
1
n

n∑
i=1

Xi

]
= 1
n2

n∑
i=1

Var [Xi] = 1
n
p(1− p).

For t > 0 Chebyshev’s inequality gives

P
[∣∣∣Xn − p

∣∣∣ ≥ t
]
≤ p(1− p)

nt2
≤ 1

4nt2

for any p ∈ (0, 1). In particular, for t = 0.2 and n = 100,

P
[∣∣∣Xn − p

∣∣∣ ≥ t
]
≤ 0.0625.
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On the other hand, Hoeffding’s inequality gives

P
[∣∣∣Xn − p

∣∣∣ ≥ t
]
≤ 2P

[
1
n

∣∣∣∣∣
n∑
i=1

(Xi − E [Xi])
∣∣∣∣∣ ≥ t

]

= 2P
[∣∣∣∣∣

n∑
i=1

(Xi − E [Xi])
∣∣∣∣∣ ≥ nt

]

≤ 2 exp
(
− 2n2t2∑n

i=1(bi − ai)2

)
= 2 exp

(
−2nt2

)
.

In particular, for t = 0.2 and n = 100,

P
[∣∣∣Xn − p

∣∣∣ ≥ t
]
≤ 0.000067,

which is almost 100 times smaller than the bound obtained by Chebyshev.
Remark 5.17. We know, by the law of large numbers, that

1
n

n∑
i=1

Xi → E [Xi] = p almost surely.

By Chebyshev,
∞∑
n=1

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − p
∣∣∣∣∣ ≥ t

]
≤
∞∑
n=1

1
4nt2 =∞,

which does not give bounds good enough to prove that the above series is finite.
However, by Hoeffding,

∞∑
n=1

P
[∣∣∣∣∣ 1n

n∑
i=1

Xi − p
∣∣∣∣∣ ≥ t

]
≤ 2

∞∑
n=1

e−2nt2 = 2
( 1

1− e−2t2 − 1
)
<∞.

The first Borel-Cantelli lemma then ascertains the almost sure convergence in the
law of large numbers.
Theorem 5.18 (Azuma-Hoeffding inequality, McDiarmid’s inequality). Let (Xn)n≥1
be a family of independent random variables and let H : Rn → R be a measurable
function such that the random variable H(X1, . . . , Xn) is integrable. Then

P [ |H(X1, . . . , Xn)− E [H(X1, . . . , Xn)]| ≥ t] ≤ 2 exp
(
−2t2∑n
k=1 c

2
k

)
,

where

ck = sup
x,x′,xi∈R

|H(x1, . . . , xk−1, x, xk+1, . . . , xn)−H(x1, . . . , xk−1, x
′, xk+1, . . . , xn)| .
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We want to apply this to the Stieltjes transform of the Wigner matrix XN =(
1√
N
Xij

)
, where the Xij are independently identically distributed with E [Xij] = 0.

Theorem 5.19 (Rank theorem). Let A,B ∈MN(C)be Hermitian. Then

‖FA − FB‖∞ ≤
1
N

rank(A−B),

where, for any matrix M with eigenvalues λ1, . . . , λN ,

FM(x) = 1
N

N∑
i=1

1{λi≤x}

Let f : R→ R be integrable. By integration of parts and the rank theorem,∣∣∣∣∫ f dµA −
∫
f dµB

∣∣∣∣ =
∣∣∣∣∫ f ′(t) (FA(t)− FB(t)) dt

∣∣∣∣
≤ rank(A−B)

N

∫
|f ′(t)| dt.

As before, writeXN as a function of its entriesXN = A (x1, . . . , xN), where x1, x2, . . . , xN
are the rows of the lower triangular matrix, i.e., they are vectors in C,C2, . . . ,CN .
Then

µXN = 1
N

N∑
i=1

δλi(A(x1,...,xN )) = µA(x1,...,xN )

and for the Stieltjes transform we have

gz(x1, . . . , xN) =
∫ 1
λ− z

dµA(x1,...,xN )(λ).

We let y = (x1, . . . , xN) and y′ = (x1, . . . , xk−1, x
′, xk+1, . . . , xN), where the only

difference between y and y′ is their k-th component, i.e., the k-th row of the lower
triangular matrix. Then

|gz(y)− gz(y′)| ≤
rank (A(y)− A(y′))

N
‖f ′‖L1

≤ 2
N
‖f ′‖L1

.

We apply the Azuma-Hoeffding inequality to the real and to the imaginary part of
gXN and can easily check that∥∥∥∥∥

(
Re 1

λ− z

)′∥∥∥∥∥
L1

=
∥∥∥∥∥
(

Im 1
λ− z

)′∥∥∥∥∥
L1

≤ 2
Im z

,
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thus, for all k = 1, . . . , N ,
ck ≤

4
N Im z

.

Hence we obtain

P [|gXN (z)− E [gXN (z)]| ≥ t] ≤ 4 exp

 −2t2
N∑
k=1

16
(Im z)2N2

 ≤ 4 exp
(
−Nt

2

8 (Im z)2
)
.

Set t = N−
1
2 +ε for some ε > 0 such that∑

N≥1
P [|gXN (z)− E [gXN (z)]| ≥ t] <∞.

Therefore, by Borel-Cantelli,

|gXN (z)− E [gXN (z)]| → 0 almost surely.
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6 Analytic description of the
eigenvalue distribution of
Gaussian random matrices

In Problem 8 we showed that the joint distribution of the entries aij = xij + yij of
a GUE A = (aij)Ni,j=1 has density

c exp
(
−N2 TrA2

)
dA.

This clearly shows the invariance of the distribution under unitary transformations:
Let U be a unitary N × N -matrix and let B = U∗AU = (bij)Ni,j=1. Then we have
TrB2 = TrA2 and the volume element is invariant under unitary transformations,
dB = dA. Therefore, for the joint distributions of eigenvalues of A and B respec-
tively,

c exp
(
−N2 TrB2

)
dB = c exp

(
−N2 TrA2

)
dA.

Thus the joint distribution of entries of a GUE is invariant under unitary transfor-
mations, which explains the name Gaussian Unitary Ensemble. We would like to
transform this density from entries to eigenvalues. Instead of GUE, we will consider
the real case, i.e., GOE.

Definition 6.1 (GOEmatrices). AGaussian orthogonal randommatrix (GOE)
A = (xij)Ni,j=1 is given by real-valued entries xij with xij = xji for all i, j = 1, . . . , N
and joint distribution

cN exp
(
−N4 TrA2

)
dA,

where
dA =

∏
i≥j

dxij.

Remark 6.2. (i) This is clearly invariant under orthogonal transformation of the
entries.
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(ii) This is equivalent to independent Gaussian random variables. But the variance
for the diagonal entries has to be chosen differently from the off-diagonals.
Consider the example N = 2 with

A =
(
x11 x12
x12 x22.

)

Then

exp
−N4 Tr

(
x11 x12
x12 x22.

)2
 = exp

(
−N4

(
x2

11 + 2x2
12 + x2

22

))

= exp
(
−N4 x

2
11

)
exp

(
−N2 x

2
12

)
exp

(
−N4 x

2
22

)
.

(iii) From this one can easily determine the normalization constant cN (as a func-
tion of N).

Since we usually are interested in functions of the eigenvalues, we will now transform
this density to eigenvalues.
Example 6.3. As a warmup, let us consider the GOE for N = 2

A =
(
x11 x12
x12 x22

)

with density
p(A) = c2 exp

(
−N4 TrA2

)
.

We parametrize A by its eigenvalues λ1 and λ2 and an angle θ by diagonalization
A = OTDO, where

D =
(
λ1 0
0 λ2

)
and O =

(
cos θ − sin θ
sin θ cos θ

)
.

I.e.,

x11 = λ1 cos2 θ + λ2 sin2 θ,

x12 = (λ1 − λ2) cos θ sin θ,
x22 = λ1 sin2 θ + λ2 cos2 θ.

Note that O and D are not uniquely determined by A. In particular, if λ1 = λ2
then any orthogonal O works. However, this case has probability zero and thus can
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be ignored (comes later). If λ1 < λ2 then O contains the normalized eigenvectors
for λ1 and λ2. Those are unique up to a sign, which can be fixed by requiring that
cos θ ≥ 0. Hence θ is not running from −π to π, but instead it can be restricted to[
−π

2 ,
π
2

]
. We will now transform

p(x11, x22, x12) dx11 dx22 dx12 → q(λ1, λ2, θ) dλ1 dλ2 dθ

by the change of variable formula

q = p |detDF | ,

where DF is the Jacobian of

F : (x11, x22, x12) 7→ (λ1, λ2, θ).

We calculate

detDF = det

 cos2 θ sin2 θ −2(λ1 − λ2) sin θ cos θ
cos θ sin θ − cos θ sin θ (λ1 − λ2) (− sin2 θ cos2 θ)

sin2 θ cos2 θ 2(λ1 − λ2) sin θ cos θ

 = −(λ1 − λ2)

such that |detDF | = |λ1 − λ2|. Thus,

q(λ1, λ2, θ) = c2e
−N4 (λ2

1+λ2
2) |λ1 − λ2| .

Note that q is independent of θ, i.e., we have a uniform distribution in θ. Consider
a function f = f(λ1, λ2) of the eigenvalues. Then

E [f(λ1, λ2)] =
∫ ∫ ∫

q(λ1, λ2, θ)f(λ1, λ2) dλ1 dλ2 dθ

=

π
2∫

−π2

∫ ∫
λ1<λ2

f(λ1, λ2)c2e
−N4 (λ2

1+λ2
2) |λ1 − λ2| dλ1 dλ2 dθ

= πc2

∫ ∫
λ1<λ2

f(λ1, λ2)e−N4 (λ2
1+λ2

2) |λ1 − λ2| dλ1 dλ2.

Thus, the density for the joint distribution of the eigenvalues on {(λ1, λ2); λ1 < λ2}
is given by

c̃2e
−N4 (λ2

1+λ2
2) |λ1 − λ2|

with c̃2 = πc2.
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Remark 6.4. Let us check that the probability of λ1 = λ2 is zero.
λ1, λ2 are the solutions of the characteristic equation

0 = det(λI − A) = (λ− x11)(λ− x22)− x2
12

= λ2 − (x11 + x22)λ+ (x11x22 − x2
12)

= λ2 − bλ+ c.

Then there is only one solution if and only if the discriminant d = b2 − 4ac is zero.
However,

{(x11, x22, x12); d(x11, x22, x12) = 0}

is a two-dimensional surface in R3, i.e., its Lebesgue measure is zero.
Now we consider general GOE(N).

Theorem 6.5. The joint distribution of the eigenvalues of a GOE(N) is given by a
density

c̃Ne
−N4 (λ2

1+···+λ2
N ) ∏

k<l

(λl − λk)

restricted on λ1 < · · · < λN .

Proof. In terms of the entries of the GOE matrix A we have density

p (xkl | k ≥ l) = cNe
−N4 TrA2

,

where A = (xkl)Nk,l=1 with xkl real independent Gaussians and xkl = xlk for all l, k.
Again we diagonalize A = OTDO with O diagonal and D = diag(λ1, . . . , λN) with
λ1 ≤ · · · ≤ λN . As before, degenerated eigenvalues have probability zero, hence
this case can be neglected and we assume λ1 < · · · < λN . We parametrize O via
O = e−H by a skew-symmetric matrix H, that is, HT = −H, i.e., H = (hij)Ni,j=1
with hij ∈ R and hij = −hji for all i, j. In particular, hii = 0 for all i. We have

OT =
(
e−H

)T
= e−H

T = eH

and thus
OTO = eHe−H = eH−H = e0 = I = OOT .

Note that A = eHDe−H . For A we have the variables

{xij; j ≤ i}
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and for eHDe−H we have

{λ1, . . . , λN} ∪ {hij; i > j}.

We thus see that the parametrization has the right number of parameters. This
parametrization is locally bijective (O = e−H is a parametrization of the Lie group
SO(N) by the Lie algebra so(N) of skew-symmetric matrices). So we need to com-
pute the Jacobian of the map

S : A 7→ eHDe−H .

We have

dA = ( deH)De−H + eH( dD)e−H + eHD( de−H)
= eH

[
e−H( deH)D + dD +D( de−H)eH

]
e−H .

This transports the calculation of the derivative at any arbitrary point eH to the
identity element I = e0. It suffices to calculate the Jacobian at H = 0, i.e., for
eH = I and deH = dH. Then

dA = dHD −D dH + dD,

i.e.,
dxij = dhijλj − λi dhij + dλiδij

This means that we have
∂xij
∂λk

= δijδik

and
∂xij
∂hkl

= δikδjl(λl − λk).

Hence the Jacobian is given by

J = detDS =
∏
k<l

(λl − λk).

Thus,

q(λ1, . . . , λN , hkl) = p(xij | i ≥ j)J = cNe
−N4 TrA2 ∏

k<l

(λl − λk).

This is independent of the “angles” hkl, so integrating over those variables just
changes the constant cN into another constant c̃N . Rewriting TrA2 = λ2

1 + · · ·+ λ2
N

in terms of the eigenvalues gives the statement.
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In a similar way, the complex case (GUE) can be treated and we get the following:

Theorem 6.6. The joint distribution of the eigenvalues of a GUE(N) is given by a
density

ĉNe
−N2 (λ2

1+···+λ2
N ) ∏

k<l

(λl − λk)2

restricted on λ1 < · · · < λN .

Definition 6.7. The function

∆(λ1, . . . , λN) =
N∏

k,l=1
k<l

(λl − λk)

is called the Vandermonde determinant.

Proposition 6.8. For λ1, . . . , λN ∈ R we have that

∆(λ1, . . . , λN) = det
(
λi−1
j

)N
i,j=1

= det


1 1 · · · 1
λ1 λ2 . . . λN
... ... . . . ...

λN−1
1 λN−1

2 . . . λN−1
N

 .

Proof. det
(
λi−1
j

)N
i,j=1

is a polynomial in λ1, . . . , λN and if λl = λk for some l, k ∈
{1, . . . , N} then

det
(
λi−1
j

)N
i,j=1

= 0 = ∆(λ1, . . . , λN).

For N = 1 the statement is obviously true. Suppose that the statement is true up
to N − 1. Consider the determinant

p(x) = det


1 1 · · · 1
x λ2 . . . λN
... ... . . . ...

xN−1 λN−1
2 . . . λN−1

N

 .

Expanding with respect to the first column, one can see that p has degree at most
N − 1. But

p(λ2) = · · · = p(λN) = 0,
so (x− λk) divides p for all k = 2, . . . , N i.e.,

p(x) = c(x− λ2) · · · (x− λN)

74



with some constant c not depending on x. Expanding the determinant with respect
to xN−1 we see that

c = (−1)N−1 det


1 · · · 1
λ2 . . . λN
... . . . ...

λN−2
2 . . . λN−2

N


= (−1)N−1∆(N−1)(λ2, . . . , λN)

= (−1)N−1
n∏

k,l=2
k<l

(λl − λk).

Therefore,

det
(
λi−1
j

)N
i,j=1

= p(λ1) =
n∏

k,l=1
k<l

(λl − λk) = ∆(λ1, . . . , λN).

Note: In det
(
λi−1
j

)N
i,j=1

we can add arbitrary linear combinations of smaller rows
to the k-th row without changing the value of the determinant, i.e., we can replace
λk by any arbitrary monic polynomial pk(λ) = λk + αk−1λ

k−1 + · · · + α1λ + α0 of
degree k. Hence we have the following statement:

Proposition 6.9. Let p0, . . . , pN−1 be monic polynomials with deg pk = k. Then we
have

det (pi−1 (λj))Ni,j=1 = ∆(λ1, . . . , λN) =
N∏

k,l=1
k<l

(λl − λk).

In the following, we will make a special choice for the pk. We will choose them
as the Hermite polynomials, which are orthogonal with respect to the Gaussian
distribution 1

c
e−

1
2λ

2 .

Definition 6.10. The Hermite polynomials Hn are defined by the following
rules.

(i) Hn is a monic polynomial of degree n.

(ii) For all n,m ≥ 0: ∫
R

Hn(x)Hm(x) 1√
2π
e−

1
2x

2 dx = δnmn!
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Remark 6.11. (i) One can get the Hn(x) from the monomials 1, x, x2, . . . via
Gram-Schmidt orthogonalization as follows.
(1) We define an inner product on the polynomials by

〈f, g〉 =
∫
R

f(x)g(x) 1√
2π
e−

1
2x

2 dx.

(2) We put H0(x) = 1. This is monic of degree 0 with

〈H0, H0〉 =
∫
R

1√
2π
e−

1
2x

2 dx = 1 = 0!.

(3) We put H1(x) = x. This is monic of degree 1 with

〈H1, H0〉 =
∫
R

x
1√
2π
e−

1
2x

2 dx = 0

and
〈H1, H1〉 =

∫
R

x2 1√
2π
e−

1
2x

2 dx = 1 = 1!.

(4) For H2, note that

〈x2, H1〉 =
∫
R

x3 1√
2π
e−

1
2x

2 dx = 0

and
〈x2, H0〉 =

∫
R

x2 1√
2π
e−

1
2x

2 dx = 1.

Hence we set H2(x) = x2 −H0(x) = x2 − 1. Then we have

〈H2, H0〉 = 0 = 〈H2, H1〉

and
〈H2, H2〉 =

∫
R

(x2 − 1)2 1√
2π
e−

1
2x

2 dx = 3− 2 + 1 = 2!

(5) Continue in this way.
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Note that the Hn are uniquely determined by the requirements that Hn is
monic and that 〈Hm, Hn〉 = 0 for all m 6= n. That we have 〈Hn, Hn〉 = n!, is
then a statement which has to be proved.

(ii) The Hermite polynomials satisfy many explicit relations; important is the
three-term recurrence relation

xHn(x) = Hn+1(x) + nHn−1(x)

for all n ≥ 1.

(iii) The first few Hn are

H0(x) = 1,
H1(x) = x,

H2(x) = x2 − 1,
H3(x) = x3 − 3x,
H4(x) = x4 − 6x2 + 3.

(iv) By Proposition 6.9 we can now use the Hn for writing our Vandermonde de-
terminant as

∆(λ1, . . . , λN) = det (Hi−1 (λj))Ni,j=1 .

We want to use this for our GUE(N) density

q(λ1, . . . , λN) = ĉNe
−N2 (λ2

1+···+λ2
N )∆(λ1, . . . , λN)2

= ĉNe
− 1

2 (µ2
1+···+µ2

N )∆
(
µ1√
N
, . . . ,

µN√
N

)2

.

= ĉNe
− 1

2 (µ2
1+···+µ2

N )∆(µ1, . . . , µN)2
(

1√
N

)N(N−1)

,

where the µi =
√
Nλi are the eigenvalues of the “unnormalized” GUE ma-

trix
√
NAN . It will be easier to deal with those. We now will also go

over from ordered eigenvalues λ1 < λ2 < · · · < λN to unordered eigenval-
ues (µ1, . . . , µN) ∈ RN . Since in the latter case each ordered tuple shows up
N ! times, this gives an additional factor N ! in our density. We collect all these
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N -dependent factors in our constant c̃N . So we now have the density

p(µ1, . . . , µN) = c̃Ne
− 1

2 (µ2
1+···+µ2

N )∆(µ1, . . . , µN)2

= c̃Ne
− 1

2 (µ2
1+···+µ2

N )
[
det (Hi−1 (µj))Ni,j=1

]2
= c̃N

[
det

(
e−

1
4µ

2
jHi−1 (µj)

)N
i,j=1

]2
.

Definition 6.12. The Hermite functions Ψn are defined by

Ψn(x) = (2π)− 1
4 (n!)− 1

2 e−
1
4x

2
Hn(x).

Remark 6.13. (i) We have∫
R

Ψn(x)Ψm(x) dx = 1√
2π

1√
n!m!

∫
R

e−
1
4x

2
Hn(x)Hm(x) dx = δnm,

i.e., the Ψn are orthonormal with respect to the Lebesgue measure. Actually,
they form an orthonormal Hilbert space basis of L2(R).

(ii) Now we can continue the calculation

p(µ1, . . . , µN) = cN
[
det (Ψi−1 (µj))Ni,j=1

]2
with a new constant cN . Denote Vij = Ψi−1(µj). Then we have

(detV )2 = detV detV t = det(V tV )

such that

(V tV )ij =
N∑
k=1

VkiVkj =
N∑
k=1

Ψk−1(µi)Ψk−1(µj).

Definition 6.14. The N -th Hermite kernel KN is defined by

KN(x, y) =
N−1∑
k=0

Ψk(x)Ψk(y).

Theorem 6.15. The unordered joint eigenvalue distribution of an unnormalized
GUE(N) is given by the density

p(µ1, . . . , µN) = cN det (KN(µi, µj))Ni,j=1 .
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Proposition 6.16. KN is a reproducing kernel, i.e.,∫
R

KN(x, u)KN(u, y) du = KN(x, y).

Proof. We calculate

∫
R

KN(x, u)KN(u, y) du =
∫
R

(
N−1∑
k=0

Ψk(x)Ψk(u)
)(

N−1∑
l=0

Ψl(u)Ψl(y)
)

du

=
N−1∑
k,l=0

Ψk(x)Ψl(y)
∫
R

Ψk(u)Ψl(u) du

=
N−1∑
k=0

Ψk(x)Ψk(y)

= KN(x, y).

Lemma 6.17. Let K : R2 → R be a reproducing kernel, i.e.,∫
R

K(x, u)K(u, y) du = K(x, y).

Put d =
∫
RK(x, x) dx. Then, for all n ≥ 2,∫

R

det (K(µi, µj))ni,j=1 dµn = (d− n+ 1) det (K(µi, µj))n−1
i,j=1 .

Proof. Consider the case n = 2. Then

∫
R

det
(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
dµ2 = K(µ1, µ1)

∫
R

K(µ2, µ2) dµ2

−
∫
R

K(µ1, µ2)K(µ2, µ1) dµ2

= (d− 1)K(µ1, µ1)
= (d− 1)K(µ1, µ1) det (K(µ1, µ1)) .
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For n = 3,

det

K(µ1, µ1) K(µ1, µ2) K(µ1, µ3)
K(µ2, µ1) K(µ2, µ2) K(µ2, µ3)
K(µ3, µ1) K(µ3, µ2) K(µ3, µ3)

 = det
(
K(µ2, µ1) K(µ2, µ2)
K(µ3, µ1) K(µ3, µ2)

)
K(µ1, µ3)

− det
(
K(µ1, µ1) K(µ1, µ2)
K(µ3, µ1) K(µ3, µ2)

)
K(µ2, µ3)

+ det
(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
K(µ3, µ3),

with∫
R

det
(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
K(µ3, µ3) dµ3 = det

(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
d,

and

−
∫
R

det
(
K(µ1, µ1) K(µ1, µ2)
K(µ3, µ1) K(µ3, µ2)

)
K(µ2, µ3) dµ3

= −
∫
R

det
(

K(µ1, µ1) K(µ1, µ2)
K(µ2, µ3)K(µ3, µ1) K(µ2, µ3)K(µ3, µ2)

)
dµ3

= − det
(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
,

and ∫
R

det
(
K(µ2, µ1) K(µ2, µ2)
K(µ3, µ1) K(µ3, µ2)

)
K(µ1, µ3) dµ3

=
∫
R

det
(

K(µ2, µ1) K(µ2, µ2)
K(µ1, µ3)K(µ3, µ1) K(µ1, µ3)K(µ3, µ2)

)
dµ3

= det
(
K(µ2, µ1) K(µ2, µ2)
K(µ1, µ1) K(µ1, µ2)

)

= − det
(
K(µ1, µ1) K(µ1, µ2)
K(µ2, µ1) K(µ2, µ2)

)
.

The general case works in the same way.
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Corollary 6.18. Under the assumptions of Lemma 6.17 we have∫
R

· · ·
∫
R

det (K(µi, µj))ni,j=1 dµ1 · · · dµn = (d− n+ 1)(d− n+ 2) · · · (d− 1)d.

Remark 6.19. We want to apply this to the Hermite kernel K = KN . In this case
we have

d =
∫
R

KN(x, x) dx

=
∫
R

N−1∑
k=0

Ψk(x)Ψk(x) dx

=
N−1∑
k=0

∫
R

Ψk(x)Ψk(x) dx

= N,

and thus ∫
R

· · ·
∫
R

det (KN(µi, µj))Ni,j=1 dµ1 · · · dµn = N !.

This now allows us to determine the constant cN in the density p(µ1, . . . , µn). Since
p is a probability density on RN , we have

1 =
∫
RN

p(µ1, . . . , µn) dµ1 · · · dµN

= cN

∫
R

· · ·
∫
R

det (KN(µi, µj))Ni,j=1 dµ1 · · · dµN

= cNN !,

such that cN = 1
N ! .

Theorem 6.20. The unordered joint eigenvalue distribution of an unnormalized
GUE(N) is given by a density

p(µ1, . . . , µN) = 1
N ! det (KN(µi, µj))Ni,j=1 ,

where KN is the Hermite kernel

KN(x, y) =
N−1∑
k=0

Ψk(x)Ψk(x).
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Theorem 6.21. The averaged eigenvalue density of an unnormalized GUE(N) is
given by

pN(µ) = 1
N
KN(µ, µ) = 1√

2π
1
N

N−1∑
k=0

1
k!Hk(µ)2e−

µ2
2 .

Proof. With the notation µN = µ we get

pN(µ) =
∫
RN

p(µ1, . . . , µN−1, µ) dµ1 · · · dµN−1

= 1
N !

∫
RN

det (KN(µi, µj))Ni,j=1 dµ1 · · · dµN−1

= 1
N ! (N − 1)! det(KN(µ, µ))

= 1
N
KN(µ, µ).
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7 Determinantal processes and
non-crossing paths:
Karlin-McGregor and
Gessel-Viennot

Remark 7.1. Our probability distributions for the eigenvalues of GUE have a deter-
minantal structure, i.e., are of the form

p(µ1, . . . , µn) = 1
N ! det (KN(µi, µj))Ni,j=1 .

They describe N eigenvalues which repel each other (via the factor (µi−µj)2). If we
consider corresponding processes, then the paths of the eigenvalues should not cross.
There is a quite general relation between determinants as above and non-crossing
paths. This appeared independently in different contexts:

(i) Karlin-McGregor, 1958, Markov chains and Brownian motion

(ii) Lindström, 1973, matroids

(iii) Gessel-Viennot, 1985, combinatorics

7.2 Stochastic version à la Karlin-McGregor

Consider a random walk on the integers Z:

• Yk: position at time k

• Z: possible positions

• Transition probability (to the two neighbors) might depend on position:

i− 1 qi←− i
pi−→ i+ 1, qi + p1 = 1
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We now consider n copies of such a random walk, which at time k = 0 start at
different positions xi. We are interested in the probability that the paths don’t
cross. Let xi be such that all distances are even, i.e., if two paths cross they have
to meet.
Theorem 7.3 (Karlin-McGregor). Consider n copies of Yk, i.e., (Y (1)

k , . . . , Y
(n)
k ) at

the same time with Y (i)
0 = xi, where x1 > x2 > · · · > xn. Consider now t ∈ N and

y1 > y2 > · · · > yn. Denote by

Pt(xi, yj) = P [Yt = yj |Y0 = xi]
the probability of one random walk to get from xi to yj in t steps. Then we have

P
[
Y

(i)
t = yi for all i, Y (1)

s > Y (2)
s > · · · > Y (n)

s for all 0 ≤ s ≤ t
]

= det (Pt(xi, yj))ni,j=1 .

Example 7.4. For one symmetric random walk Yt we have the following probabilities
to go in two steps from 0 to -2,0,2:

p0

p1

q1

q0 p−1

q−1

p0p1 = 1
4

p0q1 + q0p−1 = 1
2

q0q−1 = 1
4

Now consider two such symmetric random walks and set x1 = 2 = y1, x2 = 0 = y2.
Then

P
[
Y

(1)
2 = 2 = Y

(1)
0 , Y

(2)
2 = 0 = Y

(2)
0 , Y

(1)
1 > Y

(2)
1

]

= P




, ,




= 3

16 .

Note that is not allowed.

Theorem 7.3 says that we also obtain this probability from the transition probabil-
ities of one random walk as

det
(

1/2 1/4
1/4 1/2

)
= 1

4 −
1
16 = 3

16 .
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Proof of Theorem 7.3. Let Ωij be the set of all possible paths in t steps from xi to
yj. Denote by P [π] the probability for such a path π ∈ Ωij. Then we have

Pt(xi, yj) =
∑
π∈Ωij

P [π]

and we have to consider the determinant

det (Pt(xi, yj))ni,j=1 = det
 ∑
π∈Ωij

P [π]
n
i,j=1

.

Let us consider the case n = 2:

det
(∑

π∈Ω11 P [π] ∑
π∈Ω12 P [π]∑

π∈Ω21 P [π] ∑
π∈Ω22 P [π]

)
=

∑
π∈Ω11

P [π]
∑
σ∈Ω22

P [σ]−
∑
π∈Ω12

P [π]
∑
σ∈Ω21

P [σ]

Here, the first term counts all pairs of paths x1 → y1 and x2 → y2. Hence non-
crossing ones, but also crossing ones. However, such a crossing pair of paths is, via
the “reflection principle” (where we exchange the parts of the two paths after their
first crossing), in bijection with a pair of paths x1 → y2 and x2 → y1; this bijection
also preserves the probabilities.
Those paths, x1 → y2 and x2 → y1, are counted by the second term in the determi-
nant. Hence they cancel each other out, leaving only the non-crossing paths.

For general n it works similarly.

7.5 Combinatorial version à la Gessel-Viennot

Let G be a weighted directed graph without directed cycles, e.g.

where we have weights mij = me on each edge i e−→ j. This gives weights for directed
paths

P =
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via
m(P ) =

∑
e∈P

me,

and then also a weight for connecting vertices a, b,

m(a, b) =
∑

P : a→b
m(P ),

where we sum over all directed paths from a to b. Note that this is a finite sum,
because we do not have directed cycles in our graph.
Consider now two n-tuples of vertices A = (a1, . . . , an) and B = (b1, . . . , bn). A path
system P : A→ B is given by σ ∈ Sn and paths Pi : ai → bσ(i) for i = 1, . . . , n. We
also put σ(P ) = σ and sgnP = sgn σ. A vertex-disjoint path system is a path
system (P1, . . . , Pn), where the paths P1, . . . , Pn do not have a common vertex.

Lemma 7.6 (Gessel-Viennot). Let G be a finite acyclic weighted directed graph and
let A = (a1, . . . , an) and B = (b1, . . . , bn) be two n-sets of vertices. Then we have

det (m(ai, bj))ni,j=1 =
∑

P : A→B
vertex-disjoint

sgn σ(P )
n∏
i=1

m(Pi).

Proof. Similarly to the proof of Theorem 7.3 the crossing paths cancel each other
out in the determinant.

Example 7.7. Let Cn be the Catalan numbers

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . .

and consider

Mn =


C0 C1 · · · Cn
C1 C2 · · · Cn+1
... . . . ...
Cn Cn+1 · · · C2n

 .
Then we have

detM0 = 1,
detM1 = 2− 1 = 1,
detM2 = 28 + 10 + 10− 8− 14− 25 = 1.
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This is actually true for all n:

detMn = 1

This follows from Gessel-Viennot. Let us show it for M2. For this, consider the
graph

a2

a1

a0 = b0

b1

b2

All weights are chosen as 1. Paths in this graph correspond to Dyck graphs, and
thus the weights for connecting the a’s with the b’s are counted by Catalan numbers;
e.g.,

m(a0, b0) = C0,

m(a0, b1) = C1,

m(a0, b2) = C2,

m(a2, b2) = C4.

Hence, by Gessel-Viennot,

detM2 = det (m(ai, bj))2
i,j=0 =

∑
P : (a0,a1,a2)→(b0,b1,b2)

vertex-disjoint

1 = 1,

since there is only one such vertex-disjoint system of three paths, corresponding to
σ = id. This is given as follows; note that the path from a0 to b0 is actually a path
with 0 steps.
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a2

a1

a0 = b0

b1

b2
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8 Statistics of the largest
eigenvalue and Tracy-Widom
distribution

Consider GUE(N) or GOE(N). For large N , the eigenvalue distribution is close to
a semircircle with density

p(x) = 1
2π
√

4− x2.

We will now zoom to a microscopic level and try to understand the behaviour of a
single eigenvalue. The behaviour in the bulk and at the edge is different. We are
particularly interested in the largest eigenvalue. Note that at the moment we do not
know whether the largest eigenvalue sticks close to 2 with high probability. Wigner’s
semicircle law implies that it cannot go far below 2, but it does not prevent it from
being very large. We will in particular see that this cannot happen.

8.1 Some heuristics on single eigenvalues

Let us first check heuristically what we expect as typical order of fluctuations of the
eigenvalues. For this we assume (without justification) that the semicircle predicts
the behaviour of eigenvalues down to the microscopic level.

Behaviour in the bulk: In [λ, λ+t] there should be ∼ tp(λ)N eigenvalues. This is
of order 1 if we choose t ∼ 1

N
. This means that eigenvalues in the bulk have for their

position an interval of size ∼ 1
N
, so this is a good guess for the order of fluctuations

for an eigenvalue in the bulk.

Behaviour at the edge: In [2− t, 2] there should be roughly

N

2∫
2−t

p(x) dx = N

2π

2∫
2−t

√
(2− x)(2 + x) dx

89



many eigenvalues. To have this of order 1, we should choose t as follows:

1 ≈ N

2π

2∫
2−t

√
(2− x)(2 + x) dx

≈ N

π

2∫
2−t

√
2− x dx

= N

π

2
3t

3
2

Thus 1 ∼ t
3
2N , i.e., t ∼ N−

2
3 . Hence we expect for the largest eigenvalue an interval

or fluctuation of size N− 2
3 . Very optimistically, we might expect

λmax ≈ 2 +N−
2
3x,

where x has N -independent distribution.

8.2 The miracle

This heuristic (at least its implication) is indeed true and one has that the limit

Fβ(x) = lim
N→∞

P
[
N

2
3 (λmax − 2) ≤ x

]
exists. It is called the Tracy-Widom distribution.
Remark 8.3. (i) Note the parameter β! This corresponds to:

GOE β = 1 (λi − λj)1

GUE β = 2 (λi − λj)2

GSE β = 4 (λi − λj)4

It turns out that the statistics of the largest eigenvalue is different for real,
complex, quaternionic Gaussian random matrices. The behaviour on the mi-
croscopic level is more sensitive to the underlying symmetry than the macro-
scopic behaviour.

(ii) On the other hand, when β is fixed, there is a large universality class for the
corresponding Tracy-Widom distribution. Fβ shows up as limiting fluctuations
for
(a) GUE (Tracy-Widom, 1993),
(b) more general Wigner matrices (Soshnikov, 1999),
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(c) general unitarily invariant matrix ensembles (Deift + Co, 1994-2000),
(d) length of the longest increasing subsequence of random permutations

(Baik, Deift, Johansson, 1999; Okounkov, 2000),
(e) fluctuations of arctic cicle for Aztec diamond (Johansson, 2005),
(f) various growth processes like ASEP, TASEP.

(iii) There is still no uniform explanation for this universality. The feeling is that
Tracy-Widom is somehow the analogue of the normal distribution for a kind
of central limit theorem, where independence is replaced by some kind of
dependence. But no one can make this precise at the moment.

(iv) Proving Tracy-Widom for GUE is out of reach for us, but we will give some
ideas. In particular, we try to derive rigorous estimates which show that our
N−

2
3 -heuristic is of the right order and that the largest eigenvalue converges

to 2.

8.4 How to estimate P [λmax ≥ 2 + ε]?

We want to derive an estimate, in the GUE case, for the probability P [λmax ≥ 2 + ε],
which is compatible with our heuristic that ε = N−

2
3x. We will refine our moment

method for this. AN is our normalized GUE(N). We have for all k ∈ N:

P [λmax ≥ 2 + ε] = P
[
(λmax)2k ≥ (2 + ε)2k

]
≤ P

 N∑
j=1

λ2k
j ≥ (2 + ε)2k


= P

[
trA2k

N ≥
(2 + ε)2k

N

]

≤ N

(2 + ε)2kE
[
trA2k

N

]
In the last step we used the Markov inequality; note that we have even powers, and
hence the random variable tr(A2k

N ) is positive.
In Theorem 2.15 we calculated the expectation in terms of a genus expansion as

E
[
tr(A2k

N )
]

=
∑

π∈P2(2k)
N#(γπ)−k−1

=
∑
g≥0

εg(k)N−2g,
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where

εg(k) = # {π ∈ P2(2k); π has genus g} .

The inequality

P [λmax ≥ 2 + ε] ≤ N

(2 + ε)2kE
[
trA2k

N

]

is useless if k is fixed for N → ∞, because then the right hand side goes to ∞.
Hence we also have to scale k with N (we will use k ∼ N

2
3 ), but then the sub-

leading terms in the genus expansion become important. Up to now we only know
that ε0(k) = Ck, but now we need some information on the other εg(k). This is
provided by a theorem of Harer and Zagier.

Theorem 8.5 (Harer-Zagier, 1986). Let us define bk by
∑
g≥0

εg(k)N−2g = Ckbk,

where Ck are the Catalan numbers. (Note that the bk depend also on N , but we
suppress this dependency in the notation.) Then we have the recursion formula

bk+1 = bk + k(k + 1)
4N2 bk−1

for all k ≥ 2.

Example 8.6. We will prove this later. For now, let us check it for small examples.
From Remark 2.14 we know

C1b1 = E
[
trA2

N

]
= 1,

C2b2 = E
[
trA4

N

]
= 2 + 1

N2 ,

C3b3 = E
[
trA6

N

]
= 5 + 10

N2 ,

C4b4 = E
[
trA8

N

]
= 14 + 70

N2 + 21
N4 ,

92



such that
b1 = 1,

b2 = 1 + 1
2N2 ,

b3 = 1 + 2
N2 ,

b4 = 1 + 5
N2 + 3

2N4 .

We now check the recursion from Theorem 8.5 for k = 3:

b3 + k(k + 1)
4N2 b2 = 1 + 2

N2 + 12
4N2

(
1 + 1

2N2

)
= 1 + 5

N2 + 3
2N4

= b4

Corollary 8.7. For all N, k ∈ N we have for a GUE(N) matrix AN that

E
[
trA2k

N

]
≤ Ck exp

(
k3

2N2

)
.

Proof. Note that by definition, bk > 0 for all k ∈ N and hence bk+1 > bk. Thus,

bk+1 = bk + k(k + 1)
4N2 bk−1

≤ bk

(
1 + k(k + 1)

4N2

)

≤ bk

(
1 + k2

2N2

)
,

such that, since 1 + x ≤ ex,

bk ≤
(

1 + (k − 1)2

2N2

)(
1 + (k − 2)2

2N2

)
· · ·

(
1 + 12

2N2

)

≤
(

1 + k2

2N2

)k

≤ exp
(
k2

2N2

)k

= exp
(
k3

2N2

)
.

93



Almost sure convergence of the largest eigenvalue

We can now continue our estimate from Remark 8.4:

P [λmax ≥ 2 + ε] ≤ N

(2 + ε)2kE
[
trA2k

N

]
≤ N

(2 + ε)2kCk exp
(
k3

2N2

)

≤ N

(2 + ε)2k
4k

k
3
2

exp
(
k3

2N2

)
.

For the last estimate, we used

Ck ≤
4k
√
πk

3
2
≤ 4k

k
3
2
.

Let us first fix ε > 0 and choose

kN =
⌊
N

2
3
⌋
.

Then
N

k
3/2
N

N→∞−−−→ 1, k3
N

2N2
N→∞−−−→ 1

2 .

Hence

lim sup
N→∞

P [λmax ≥ 2 + ε] ≤ lim
N→∞

( 2
2 + ε

)2kN
e

1
2 = 0,

such that for all ε > 0,
lim
N→∞

P [λmax ≥ 2 + ε] = 0.

Thus, λmax converges in probability to 2.

Corollary 8.8. For a GUE(N) matrix AN we have that its largest eigenvalue con-
verges in probability, and almost surely, to 2, i.e.,

λmax(AN) N→∞−−−→ 2 almost surely.

Proof. For the almost sure version one has to use Borel-Cantelli and the fact that
∑
N

( 2
2 + ε

)2kN
<∞.
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Estimate for fluctuations

Our estimate from Corollary 8.7 now also gives some information about the fluc-
tuations of λmax about 2, if we choose ε also depending on N . Let us use there
now

kN =
⌊
N

2
3 r
⌋

and
εN = N−

2
3 t.

Then
N

k
3/2
N

N→∞−−−→ 1
r

3
2
,

k3
N

2N2
N→∞−−−→ r3

2 ,

and
4kN

(2 + εN)2kN
=
(

1
1 + 1

2N2/3 t

)2N2/3r
N→∞−−−→ e−rt,

and thus

lim sup
N→∞

P
[
λmax ≥ 2 + tN−

2
3
]
≤ 1
r3/2 e

r3/2e−rt

for arbitrary r > 0. We optimize this now by choosing r =
√
t for t > 0 and get

lim sup
N→∞

P
[
λmax ≥ 2 + tN−

2
3
]
≤ t−

3
4 exp

(
−1

2t
3
2

)
.

Although this estimate does not prove the existence of the limit on the left hand side,
it turns out that the right hand side is quite sharp and captures the tail behaviour
of the Tracy-Widom distribution quite well.

Proof of the Harer-Zagier recursion

Proof of Theorem 8.5. Let us denote

T (k,N) = E
[
trA2k

N

]
=
∑
g≥0

εg(k)N−2g.

The genus expansion shows that T (k,N) is, for fixed k, a polynomial in N−1. Ex-
pressing it in terms of integrating over eigenvalues reveals the surprising fact that,
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up to a Gaussian factor, it is also a polynomial in k for fixed N , as will be shown in
the following Lemma 8.9. We now have that

Nk 1
(2k − 1)!!T (k,N) = Nk 1

(2k − 1)!!
∑

π∈P2(2k)
N#(γπ)−k−1

= 1
N

1
(2k − 1)!!

∑
π∈P2(2k)

N#(γπ)

= 1
N

1
(2k − 1)!!t(k,N),

where the last equality defines t(k,N).
By Lemma 8.9, t(k,N)

(2k−1)!! is a polynomial of degree N − 1 in k. We interpret it as
follows:

t(k,N) =
∑

π∈P2(2k)
# {coloring cycles of γπ with at most N different colors}

Let us introduce

t̃(k, L) =
∑

π∈P2(2k)
# {coloring cycles of γπ with exactly L different colors} ,

then we have

t(k,N) =
N∑
L=1

t̃(k, L)
(
N

L

)
,

because if we want to use at most N different colors, then we can do this by using
exactly L different colors (for any L between 1 and N), and after fixing L we have(
N
L

)
many possibilities to choose the L colors among the N colors.

This relation can be inverted by

t̃(k,N) =
N∑
L=1

(−1)N−L
(
N

L

)
t(k, L)

and hence t̃(k,N)
(2k−1)!! is also a polynomial in k of degree N − 1. But now we have

0 = t̃(0, N) = t̃(1, N) = · · · = t̃(N − 2, N),

since γπ has at most k+ 1 cycles (see 2.18) for π ∈ P2(2k) and thus t̃(k+ 1, N) = 0
if k + 1 < N , as we need at least N cycles if we want to use N different colors. So,
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t̃(k,N)
(2k−1)!! is a polynomial in k of degree N − 1 and we know N − 1 zeros; hence it must
be of the form

t̃(k,N)
(2k − 1)!! = αNk(k − 1) · · · (k −N + 2) = αN

(
k

N − 1

)
(N − 1)!.

Hence,

t(k,N) =
N∑
L=1

(
N

L

)(
k

L− 1

)
(L− 1)!αL(2k − 1)!!.

To identify αN we look at

αN+1

(
N

N

)
N !(2N − 1)!! = t̃(N,N + 1) = CN(N + 1)!.

Note that only the NC pairings can be colored with exactly N + 1 colors, and for
each such π there are (N + 1)! ways of doing so. We conclude

αN+1 = CN(N + 1)!
N !(2N − 1)!!

= CN(N + 1)
(2N − 1)!!

= 1
N + 1

(
2N
N

)
N + 1

(2N − 1)!!

= (2N)!
N !N !(2N − 1)!!

= 2N
N ! .

Thus we have

T (k,N) = 1
Nk+1 t(k,N)

= 1
Nk+1

N∑
L=1

(
N

L

)(
k

L− 1

)
(L− 1)! 2L−1

(L− 1)!(2k − 1)!!

= (2k − 1)!! 1
Nk+1

N∑
L=1

(
N

L

)(
k

L− 1

)
2L−1.
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To get information from this on how this changes in k we consider a generating
function in k,

T (s,N) = 1 + 2
∞∑
k=0

T (k,N)
(2k − 1)!!(Ns)

k+1

= 1 + 2
∞∑
k=0

N∑
L=1

(
N

L

)(
k

L− 1

)
2L−1sk+1

=
N∑
L=0

(
N

L

)
2L

∞∑
k=L−1

(
k

L− 1

)
sk+1

=
N∑
L=0

(
N

L

)
2L
(

s

1− s

)L

=
N∑
L=0

(
N

L

)( 2s
1− s

)L

=
(

1 + 2s
1− s

)N
=
(1 + s

1− s

)N
.

Note that

1
(2k − 1)!! = 2k

k!Ck(k + 1)

and

b
(N)
k = T (k,N)

Ck
.

(We write now b
(N)
k instead of bk to make the dependence on N explicit.) Therefore,

(1 + s

1− s

)N
= T (s,N) = 1 + 2

∞∑
k=0

T (k,N)
(k + 1)!Ck

2k(Ns)k+1

= 1 +
∞∑
k=0

b
(N)
k

(k + 1)!(2Ns)
k+1.
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Also,

d
dsT (s,N) = N

(1 + s

1− s

)N−1 (1− s) + (1 + s)
(1− s)2

= 2N
(1 + s

1− s

)N−1 1
(1− s)2

= N
(1 + s

1− s

)N−1 (1− s) + (1 + s)
(1− s)2

= 2N
(1 + s

1− s

)N 1
(1− s)(1 + s) ,

such that
(1− s2) d

dsT (s,N) = 2NT (s,N).

Note that we have

d
dsT (s,N) =

∞∑
k=0

b
(N)
k

k! (2Ns)k2N.

Thus, by comparing coefficients in our equation from above, we conclude

b
(N)
k+1

(k + 1)!(2N)k+2 −
b

(N)
k−1

(k − 1)!(2N)k = 2N b
(N)
k+1

(k + 1)!(2N)k+1,

such that, finally,

b
(N)
k+1 = b

(N)
k + b

(N)
k−1

(k + 1)k
(2N)2 .

To finish the proof of the Harer-Zagier theorem it only remains to prove the fol-
lowing lemma. Note that this is the only place where we need the random matrix
interpretation of our quantities.

Lemma 8.9. The expression

Nk 1
(2k − 1)!!T (k,N)

is a polynomial of degree N − 1 in k.
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Proof. First check the easy case N = 1: T (k, 1) = (2k− 1)!! is the 2k-th moment of
a normal variable and

T (k, 1)
(2k − 1)!! = 1

is a polynomial of degree 0 in k.

For general N we have

T (k,N) = E
[
trA2k

N

]
= cN

∫
RN

(
λ2k

1 + · · ·+ λ2k
N

)
e−

N
2 (λ2

1+···+λ2
N) ∏

i<j

(λi − λj)2 dλ1 · · · dλN

= NcN

∫
RN

λ2k
1 e
−N2 (λ2

1+···+λ2
N) ∏

i 6=j
|λi − λj| dλ1 · · · dλN

= NcN

∫
R

λ2k
1 e
−N2 λ

2
1pN(λ1) dλ1,

where pN is the result of integrating the Vandermonde over λ2, . . . , λN . It is an even
polynomial in λ1 of degree 2(N − 1), whose coefficients depend only on N and not
on k. So

pN(λ1) =
N−1∑
l=0

αlλ
2l
1

with αl possibly depending on N . Thus,

T (k,N) = NcN
N−1∑
l=0

αl

∫
R

λ2k+2l
1 e−

N
2 λ

2
1 dλ1

= NcN
N−1∑
l=0

αlkN(2k + 2l − 1)!!N−k,

where kN contains the N -dependent normalization constants of the Gaussian mea-
sure; hence

NkT (k,N)
(2k − 1)!!

is a linear combination (with N -dependent coefficients) of terms of the form

(2k + 2l − 1)!!
(2k − 1)!! .

These terms are polynomials in k of degree l.
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8.10 How does one get to Tracy-Widom?

For determining the Tracy-Widom fluctuations in the limit N →∞ one has to use
the analytic description of the GUE’s joint density. Recall from Theorem 6.20 that
the joint density of the unordered eigenvalues of an unnormalized GUE(N) is given
by

p(µ1, . . . , µN) = 1
N ! det (KN(µi, µj))Ni,j=1 ,

where KN is the Hermite kernel

KN(x, y) =
N−1∑
k=0

Ψk(x)Ψk(x)

with the Hermite functions Ψk. BecauseKN is a reproducing kernel, we can integrate
out some of the eigenvalues and get a density of the same form. If we are integrate
out all but r eigenvalues we get, by Corollary 6.18,∫

R

· · ·
∫
R

p(µ1, . . . , µN) dµr+1 · · · dµN = 1
N ! · 1 · 2 · · · (N − r) · det (K(µi, µj))ri,j=1

= (N − r)
N ! det (K(µi, µj))ri,j=1

=: pN(µ1, . . . , µr).

Now consider

P
[
µ(N)

max ≤ t
]

= P [there is no eigenvalue in (t,∞)]
= 1− P [there is an eigenvalue in (t,∞)]

= 1−
[
NP [µ1 ∈ (t,∞)]−

(
N

2

)
P [µ1, µ2 ∈ (t,∞)]

+
(
N

3

)
P [µ1, µ2, µ3 ∈ (t,∞)]− · · ·

]

= 1 +
N∑
r=1

(−1)r
(
N

R

) ∞∫
t

· · ·
∞∫
t

pN(µ1, . . . , µr) dµ1 · · · dµr

= 1 +
N∑
r=1

(−1)r 1
r!

∞∫
t

· · ·
∞∫
t

det (K(µi, µj))ri,j=1 dµ1 · · · dµr.

Does this have a limit for N →∞?
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Note that p is the distribution for a GUE(N) without normalization, i.e.,

µ(N)
max ≈ 2

√
N.

More precisely, we expect fluctutations

µ(N)
max ≈

√
N
(
2 + tN−

2
3
)

= 2
√
N + tN−

1
6 .

We put
K̃N(x, y) = N−

1
6KN

(
2
√
N + xN−

1
6 , 2
√
N + yN−

1
6
)

so that we have

P
[
N

2
3

(
µ(N)

max − 2√
N

− 2
)
≤ t

]
=

N∑
r=0

(−1)r
r!

∞∫
t

· · ·
∞∫
t

det
(
K̃(xi, xj)

)r
i,j=1

dx1 · · · dxr.

We expect that the limit

F2(t) = lim
N→∞

P
[
N

2
3

(
µ(N)

max − 2√
N

− 2
)
≤ t

]
exists. For this, we need the limit

lim
N→∞

K̃N(x, y).

Recall that

KN(x, y) =
N−1∑
k=0

Ψk(x)Ψk(y).

For the Hermite functions we have the Christoffel-Darboux identity (Problem 31)
n−1∑
k=0

Hk(x)Hk(y)
k! = Hn(x)Hn−1(y)−Hn−1(x)Hn(y)

(x− y) (n− 1)!

and with
Ψk(x) = (2π)− 1

4 (k!)− 1
2 e−

1
4x

2
Hk(x)

as defined in Definition 6.12, we can rewrite

KN(x, y) = 1√
2π

N−1∑
k=0

1
k!e
− 1

4(x2+y2)Hk(x)Hk(y)

= 1√
2π
e−

1
4(x2+y2)HN(x)HN−1(y)−HN−1(x)HN(y)

(x− y) (N − 1)!

=
√
N · ΨN(x)ΨN−1(y)−ΨN−1(x)ΨN(y)

x− y
.
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Note that the ΨN satisfy the differential equation

ψ′N(x) = −x2ψN(x) +
√
NψN−1(x)

such that

KN(x, y) =
ΨN(x)

[
Ψ′N(y) + y

2ΨN(y)
]
−
[
Ψ′N(x) + x

2 ΨN(x)
]

ΨN(y)
x− y

= ΨN(x)Ψ′N(y)−Ψ′N(x)ΨN(y)
x− y

− 1
2ΨN(x)ΨN(y).

Now put
Ψ̃N(x) = N

1
12 ΨN

(
2
√
N + xN−

1
6
)
,

thus
Ψ̃′N(x) = N

1
12 Ψ′N

(
2
√
N + xN−

1
6
)
N−

1
6 .

Then

K̃(x, y) = Ψ̃N(x)Ψ̃′N(y)− Ψ̃′N(x)Ψ̃N(y)
x− y

− 1
2N 1

3
Ψ̃′N(x)Ψ̃′N(y).

One can show, by a quite non-trivial steepest descent method, that Ψ̃N(x) converges
to a limit. Let us call this limit the Airy function

Ai(x) = lim
N→∞

Ψ̃N(x).

The convergence is actually so strong that also

Ai′(x) = lim
N→∞

Ψ̃′N(x),

and hence

lim
N→∞

K̃(x, y) = Ai(x) Ai′(y)− Ai′(x) Ai(y)
x− y

=: A(x, y).

A is called the Airy kernel. For the Hermite functions we have

ψ′′N(x) +
(
N + 1

2 −
x2

4

)
ψN(x) = 0.
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For the Ψ̃N we have

Ψ̃′N(x) = N−
1

12 Ψ′N
(
2
√
N + xN−

1
6
)

and
Ψ̃′′N(x) = N−

1
4 Ψ′′N

(
2
√
N + xN−

1
6
)
.

Thus,

Ψ̃′′N(x) = −N− 1
4

N + 1
2 −

(
2
√
N + xN−

1
6
)2

4

ΨN

(
2
√
N + xN−

1
6
)

= −N− 1
3

N + 1
2 −

4N + 4
√
NxN−

1
6 + x2N−

1
3

4

 Ψ̃N(x)

= −N− 1
3

1
2 −

4xN 1
3 + x2N−

1
3

4

 Ψ̃N(x)

≈ −xΨ̃N(x).

Hence we expect that Ai should satisfy the differential equation

Ai′′(x)− xAi(x) = 0.

This is indeed the case, but the proof is again beyond our tools. Let us just give
the formal definiton of the Airy function and formulate the final result.

Definition 8.11. The Airy function Ai: R→ R is a solution of the Airy ODE

u′′(x) = xu(x)

determined by the following asymptotic as x→∞ :

Ai(x) ∼ 1
2π
− 1

2x−
1
4 e−

2
3x

3
2

The Airy kernel is defined by

A(x, y) = Ai(x) Ai′(y)− Ai′(x) Ai(y)
x− y

.
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Theorem 8.12. The random variable N 2
3 (λmax − 2) of the normalized GUE has a

limiting distribution as N →∞. Its limiting distribution function is

F2(t) = lim
N→∞

P
[
N

2
3 (λmax − 2) ≤ t

]
=

N∑
r=0

(−1)r
r!

∞∫
t

· · ·
∞∫
t

det (A(xi, xj))ri,j=1 dx1 · · · dxr.

The main contribution of Tracy-Widom in this context was that they were able to
derive another, quite astonishing, representation of the limiting distribution.

Theorem 8.13 (Tracy-Widom, 1994). The distribution function F2 satisfies

F2(t) = exp
− ∞∫

t

(x− t)q(x)2 dx
 ,

where q is a solution of the Painlevé II equation

q′′(x)− xq(x) + 2q(x)3 = 0

with q(x) ∼ Ai(x) as x→∞.
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9 Statistics of the longest
increasing subsequence

Definition 9.1. A permutation σ ∈ Sn is said to have an increasing subsequence
of length k if there exist indices 1 ≤ i1 < · · · < ik ≤ n such that

σ(i1) < · · · < σ(ik).

For a decreasing subsequence of length k the above holds with the second set
of inequalities reversed. For a given σ ∈ Sn we denote the length of an increasing
subsequence of maximal length by Ln(σ).

Example 9.2. (i) σ = id has an increasing subsequence of length n, hence Ln(id) =
n. All decreasing subsequences have length 1.

(ii) σ =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
has Ln(σ) = 1, but there is a decreasing

subsequence of length n.

(iii) Consider

σ =
(

1 2 3 4 5 6 7
4 2 3 1 6 5 7

)
;

this has (2, 3, 5, 7) and (2, 3, 6, 7) as longest increasing subsequences, thus
L7(σ) = 4. Its longest decreasing subsequences are (4, 2, 1) and (4, 3, 1) with
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length 3. In the graphical representation

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

an increasing subsequence corresponds to a path that always goes up.

(iv) Longest increasing subsequences are relevant for sorting algorithms. Consider
a library of n books, labeled bijectively with numbers 1, . . . , n, arranged some-
how on a single long bookshelf. The configuration of the books correspond to
a permutation σ ∈ Sn. How many operations does one need to sort the books
in a canonical ascending order 1, 2, . . . , n? It turns out that the minimum
number is n− Ln(σ). One can sort around an increasing subsequence.
Example. Around the longest increasing subsequence (1, 2, 6, 8) we sort

4 1 9 3 2 7 6 8 5
→ 4 1 9 2 3 7 6 8 5
→ 1 9 2 3 4 7 6 8 5
→ 1 9 2 3 4 5 7 6 8
→ 1 9 2 3 4 5 6 7 8
→ 1 2 3 4 5 6 7 8 9

in 9− 4 = 5 operations.
Remark 9.3. One has situations with only small increasing subsequences, like σ =(

1 · · · n
n · · · 1

)
, but then one has long decreasing subsequences. This is true in general;
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one cannot avoid both long decreasing and long increasing subsequences at the same
time. According to the slogan

“Complete order is impossible.” (Motzkin)

Theorem 9.4 (Erdős, Szekeres, 1935). Every permutation σ ∈ Sn2+1 has a mono-
tone subsequence of length more than n.

Proof. Write σ = a1a2 · · · an2+1. Assign labels (xk, yk), where xk is the length of a
longest increasing subsequence ending at ak and yk is the length of a longest decreas-
ing subsequence ending at ak. Assume now that there is no monotone subsequence
of length n+ 1. Hence for all k,

1 ≤ xk, yk ≤ n,

i.e., there are only n2 possible labels. By the pigeonhole principle there are i < j with
(xi, yi) = (xj, yj). If ai < aj we can append aj to a longest increasing subsequence
ending at ai, but then xj > xi. If ai > aj we can append aj to a longest decreasing
subsequence ending at ai, but then yj > yi. Hence we have a contradiction.

9.5 A bit of history and relation to Tracy-Widom

We are now interested in the distribution of Ln(σ) for n→∞. This means, we put
the uniform distribution on permutations, i.e.,

P [σ] = 1
n!

for all σ ∈ Sn, and consider Ln : Sn → R as a random variable. What is the
asymptotic distribution of Ln? This question is called Ulan’s problem and was
raised in the 1960’s. In 1972, Hammersley showed that the limit

Λ = lim
n→∞

E [Ln]√
n

exists and that Ln/
√
n converges to Λ in probability. In 1977, both Vershik / Kerov

and Logan / Shepp showed independently that Λ = 2. Then in 1998, Baik, Deift
and Johansson proved the asymptotic behaviour of the fluctuations of Ln; quite
surprisingly, this is also captured by the Tracy-Widom distribution:

lim
n→∞

P
[
Ln − 2

√
n

n
1
6

≤ t

]
= F2(t).

109



A very rough sketch of the proof of the Baik, Deift, Johansson theorem

(i) RSK correspondence relates permutations to Young diagrams. Ln goes under
this mapping to the length of the first row of the diagram.

(ii) These Young diagrams correspond to non-intersecting paths.

(iii) Via Gessel-Viennot the relevant quantities in terms of NC paths have a deter-
minantal form.

(iv) Show that the involved kernel, suitably rescaled, converges to the Airy kernel.

In the following we want to give some idea of the first two items in the above list;
the main (and very hard part of the proof) is to show the convergence to the Airy
kernel.

9.6 RSK correspondence

RSK stands for Robinson-Schensted-Knuth after papers from 1938, 1961 and 1973.
It gives a bijection

Sn ←→
⋃
λ

Young diagram
of size n

(Tabλ× Tabλ) ,

where Tabλ is the set of Young tableaux of shape λ.
Definition 9.7. (i) Let n ≥ 1. A partition of n is a sequence of natural numbers

λ = (λ1, . . . , λr) such that

λ1 ≥ λ2 ≥ · · · ≥ λr and
r∑
i=1

λi = n.

We denote this by λ ` n. Graphically, a partition λ ` n is represented by a
Young diagram with n boxes.

...

(ii) A Young tableau of shape λ is the Young diagram λ filled with numbers
1, . . . , n such that in any row the numbers are increasing from left to right and
in any column the numbers are increasing from top to bottom. We denote the
set of all Young tableaux of shape λ by Tabλ.
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Example 9.8. (i) For n = 1 there is only one Young diagram and one correspond-
ing Young tableau:

λ = , Tab = 1

For n = 2, there are two Young diagrams, each of them having one corre-
sponding Young tableau

λ = , Tab = 1 2 , Tab =
1
2

For n = 3, there are three Young diagrams

λ = , , ,

one of them has two corresponding tableaux:

Tab =
1 2
3 ,

1 3
2

(ii) Note that a tableau of shape λ corresponds to a walk from ∅ to λ by adding
one box in each step and only visiting Young diagrams, e.g.,

1 2 4 8
3 7
5
6

corresponds to

→ → → → → → →

Those objects are extremely important since they parametrize the irreducible rep-
resentations of Sn:

λ ` n←→ irreducible representation πλ of Sn.
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Furthermore, the dimension of such a representation πλ is given by the number of
tableaux of shape λ. If one recalls that for any finite group one has the general
statement that the sum of the squares of the dimensions over all irreducible repre-
sentations of the group gives the number of elements in the group, then one has for
the symmetric group the statement that

∑
λ`n

(#Tabλ)2 = n!.

This shows that there is a bijection between elements in Sn and pairs of tableaux of
the same shape λ ` n. The RSK correspondence is such a concrete bijection, given
by an explicit algorithm. It has the property, that Ln goes under this bijection over
to the length of the first row of the corresponding Young diagram λ.
For example, under the RSK correspondence, the permutation

σ =
(

1 2 3 4 5 6 7
4 2 3 6 5 1 7

)

corresponds to the pair of Young tableaux

1 3 5 7
2 6
4 ,

1 3 4 7
2 5
6 .

Note that L7(σ) = 4 is the length of the first row.

Relation to non-intersecting paths

Pairs (Q,P ) ∈ Tabλ × Tabλ can be identified with r = #rows(λ) paths. Q gives
the positions of where to go up and P of where to go down; the conditions on
the Young tableau guarantee that the paths will be non-intersecting; e.g. the pair
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corresponding to the σ from above gives the following non-intersecting paths:

1 2 3 4 5 6 7 7 6 5 4 3 2 1
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10 The circular law
The non-selfadjoint analogue of GUE is given by the Ginibre ensemble, where all
entries are independent and complex Gaussians. A standard complex Gaussian is
of the form

z = x+ iy√
2
,

where x and y are independent standard real Gaussians, i.e., with joint distribution

p(x, y) dx dy = 1
2πe

−x
2

2 e−
y2
2 dx dy.

If we rewrite this in terms of a density with respect to the Lebesgue measure for
real and imaginary part

z = x+ iy√
2

= t1 + it2, z = x− iy√
2

= t1 − it2,

we get

p(t1, t2) dt1 dt2 = 1
π
e−(t21+t22) dt1 dt2 = 1

π
e−|z|

2
d2z,

where d2z = dt1 dt2.
Definition 10.1. A (complex) unnormalized Ginibre ensembleAN = (aij)Ni,j=1
is given by complex-valued entries with joint distribution

1
πN2 exp

− N∑
i,j=1
|aij|2

 dA = 1
πN2 exp (−Tr(AA∗)) dA,

where
dA =

N∏
i,j=1

d2aij.

Theorem 10.2. The joint distribution of the complex eigenvalues of an N × N
Ginibre ensemble is given by a density

p(z1, . . . , zN) = cN exp
(
−

N∑
k=1
|zk|2

) ∏
1≤i<j≤N

|zi − zj|2 .
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Remark 10.3. (i) Note that typically Ginibre matrices are not normal, i.e.,
AA∗ 6= A∗A.

This means that one loses the relation between functions in eigenvalues and
traces of functions in the matrix. The latter is what we can control, the former
is what we want to understand.

(ii) As in the selfadjoint case the eigenvalues repel, hence there will almost surely
be no multiple eigenvalues. Thus we can also in the Ginibre case diagonalize
our matrix, i.e., A = V DV −1, where D = diag(z1, . . . , zN) contains the eigen-
values. However, V is now not unitary anymore, i.e., eigenvectors for different
eigenvalues are in general not orthogonal. We can also diagonalize A∗ via

A∗ =
(
V −1

)∗
D∗V ∗,

but since V −1 6= V ∗ (if A is not normal) we cannot diagonalize A and A∗

simultaneously. This means that in general, for example Tr(AA∗A∗A) has no
clear relation to

N∑
i=1

ziz̄iz̄izi.

Note that Tr(AA∗A∗A) 6= Tr(AA∗AA∗) if AA∗ 6= A∗A, but of course
N∑
i=1

ziz̄iz̄izi =
N∑
i=1

ziz̄iz1z̄i.

(iii) Hence there is a subtle point in the proof of Theorem 10.2, as we apparently
have rewritten the density exp(−Tr(AA∗)) as

exp
(
−

N∑
k=1
|zk|2

)
.

This is okay though, as we alway have

Tr(AA∗) =
N∑
k=1
|zk|2 = Tr(A∗A).

This relies on the fact that we can always bring a matrix via a unitary conju-
gation in a triangular form A = UNU∗, where U is unitary and

N =


z1 ? · · · ?

0 . . . . . . ...
... . . . . . . ?
0 · · · 0 zn

 .
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Then A∗ = UN∗U∗ with

N∗ =


z̄1 0 · · · 0
?

. . . . . . ...
... . . . . . . 0
? · · · ? z̄n


and

Tr(AA∗) = Tr(UNU∗UN∗U∗) = Tr(NN∗) =
N∑
k=1
|zk|2 .

(iv) As for GUE (Theorem 6.15) we can write the Vandermonde density in a de-
terminantal form. The only difference is that we have to replace the Hermite
polynomials Hk(x), which orthogonalize the real Gauß distribution, by mono-
mials zk, which orthogonalize the complex Gauß distribution.

Theorem 10.4. The joint eigenvalue distribution of the Ginibre ensemble is of the
determinantal form

p(z1, . . . , zn) = 1
N ! det (KN(zi, zj))Ni,j=1

with the kernel

KN(z, w) =
N−1∑
k=0

fk(z)fk(w),

where
fk(z) = 1√

π
e−

1
2 |z|

2 1√
k!
zk.

In particular, for the averaged eigenvalue density of an unnormalized Ginibre eigen-
value matrix we have the density

pN(z) = 1
N
KN(z, z) = 1

Nπ
e−|z|

2
N−1∑
k=0

|z|2k

k! .

Theorem 10.5 (Circular law for the Ginibre ensemble). The averaged eigenvalue
distribution for a normalized Ginibre random matrix 1√

N
AN converges for N → ∞

weakly to the uniform distribution on the unit disc of C with density

z 7→ 1
π

1{z∈C; |z|≤1}.
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Proof. The density q of the normalized Ginibre is given by

qN(z) = NpN
(√

Nz
)

= 1
π
e−N |z|

2
N−1∑
k=0

(
N |z|2

)k
k!

For |z| < 1 we have

eN |z|
2
−

N−1∑
k=0

(
N |z|2

)k
k! =

∞∑
k=N

(
N |z|2

)k
k!

≤

(
N |z|2

)N
N !

∞∑
l=0

(
N |z|2

)l
(N + 1)l

≤

(
N |z|2

)N
N !

1
1− N |z|2

N+1

,

Furthermore, using the lower bound

N ! ≥
√

2πNN+ 1
2 e−N

on N !, we calculate

e−N |z|
2

(
N |z|2

)N
N ! ≤ e−N |z|

2
NN |z|2N 1√

2π
1

NN+ 1
2
eN

= 1√
2π

1√
N
e−N |z|

2
eN ln|z|2eN

= 1√
2π

exp
[
N
(
− |z|2 + ln |z|2 + 1

)]
√
N

N→∞−−−→ 0.

Here, we used that
− |z|2 + ln |z|2 + 1 < 0

for |z| < 1. Hence we conclude

1− e−N |z|
2
N−1∑
k=0

(
N |z|2

)k
k! ≤ e−N |z|

2

(
N |z|2

)N
N !

1
1− N |z|2

N+1

N→∞−−−→ 0.
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Similarly, for |z| > 1,

N−1∑
k=0

(
N |z|2

)k
k! ≤ (N |z|)N−1

(N − 1)!

N−1∑
l=0

(N − 1)l(
N |z|2

)l
≤ (N |z|)N−1

(N − 1)!
1

1− N−1
N |z|2

.

Remark 10.6. (i) The convergence also holds almost surely.

(ii) The circular law also holds for non-Gaussian entries, but proving this is much
harder than the extension for the semicircle law from the Gaussian case to
Wigner matrices.

Theorem 10.7 (General circular law). Consider a complex random matrix

AN = 1√
N

(aij)Ni,j=1 ,

where the aij are independently and identically distributed random variables with
variance 1, i.e., E

[
|aij|2

]
− E [aij]2 = 1. (Note that only the existence of the second

moment is required, higher moments don’t need to be finite.) Then the eigenvalue
distribution of AN converges weakly almost surely for N → ∞ to the uniform dis-
tribution on the unit circle.

10.8 History of the proof

• 60’, Mehta: in expectation for Ginibre ensemble

• 80’, Silverstein: almost sure convergence for Ginibre

• 80’, 90’s, Girko: ideas for a proof in the general case

• 1997, Bai: first rigorous proof under additional assumptions on the distribution

• papers by Tao-Vu, Götze-Tikhomirov, Pan-Zhou and others improving more
and more on the optimal assumptions

• 2010, Tao-Vu: final version under the assumptions of the existence of the
second moment
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Remark 10.9. (i) For measures on C one can use ∗-moments and the Stieltjes
transform to describe them, but controlling the convergence properties is the
main problem.

(ii) For a matrix A its ∗-moments are all expressions of the form tr
(
Aε(1) · · ·Aε(m)

)
,

where m ∈ N and ε(1), . . . , ε(m) ∈ {1, ∗}. The eigenvalue distribution

µA = 1
N

(δλ1 + · · ·+ δλN )

of A is uniquely determined by the knowledge of all ∗-moments of A, but con-
vergence of ∗-moments does not necessarily imply convergence of the eigen-
value distribution.
Example. Consider

AN =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
... . . . 1
0 · · · · · · · · · 0


and BN =



0 1 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . 1
1 0 · · · · · · 0


.

Then µAN = δ0, but µBN is the uniform distribution on the N -th roots of
unity. Hence µAN → δ0, whereas µBN converges to the uniform distribution
on the unit circle. However, the limits of the ∗-moments are the same for AN
and BN .

(iii) For each measure µ on C one has the Cauchy-Stieltjes transform

mµ(u) =
∫
C

1
λ− z

dµ(λ).

This is almost surely defined. However, it is analytic in z only outside the
support of µ. In order to recover µ from mµ one also needs the information
about mµ inside the support. In order to determine and deal with µA one
reduces it via Girko’s “hermitization method”

∫
C

log |λ− z| dµA(z) =
t∫

0

log t dµ|A−λ1|(t)
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to selfadjoint matrices. There, the left hand side for all λ determines µA and
the right hand side is about selfadjoint matrices

|A− λ1| =
√

(A− λ1)(A− λ1)∗.

Note that the eigenvalues of |B| are related to those of(
0 B
B∗ 0

)
.

In this analytic approach one still needs to control convergence properties. For
this, estimates of probabilities of small singular values are crucial.
→ Survey of Bordenave / Chafai, Around the circular law
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11 The Marchenko-Pastur law
Let X1, . . . , Xp ∈ RN with Xi = (X1,i, . . . , XN,i)T be independently identically dis-
tributed such that

E [Xi] =


E [X1,i]

...
E [XN,i]

 = 0

and E
[
XiX

T
i

]
= ΣN . ΣN is called the covariance matrix. It is positive semi-

definite and of rank 1. Consider the matrix

BN = BN,p = 1
p

p∑
k=1

XkX
T
k ∈MN(R).

BN is a random positive semi-definite matrix and E [BN ] = ΣN . Assume N is fixed,
then by the law of large numbers applied entry-wise we get that

lim
p→∞

BN = lim
p→∞

1
p

p∑
k=1

XkX
T
k = ΣN

almost surely. In this case, BN is a good estimate of the covariance matrix ΣN .
Then a natural question to ask is what would be the behavior of BN when both N
and p go to infinity? In fact, we are in an era where an increasingly large volume
of complex data is generated and tools from classical multivariate statistics are not
enough to analyze high-dimensional data.

Definition 11.1. A Wishart matrix BN,p is an N ×N matrix of the form

BN,p = 1
p
XN,pX T

N,p,

where XN,p is an N × p matrix with independently identically distributed centered
entries of variance 1.

To simplify the notation we will drop the index p and just write BN . Note that BN

can also be written as
BN = 1

p

p∑
k=1

XkX
T
k ,
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whereX1, . . . , XN are the columns of XN . Recall that the empirical spectral measure
is given by

µBN = 1
N

N∑
k=1

δλk

with λ1, . . . , λN the eigenvalues of BN . We are interested in the case that N, p→∞
at the same pace, i.e.,

N

p

N,p→∞−−−−→ c ∈ (0,∞).

Theorem 11.2 (Marchenko-Pastur, 1967). Let (Xij)i,j be a family of independently
identically distributed random variables such that E [X11] = 0 and E [X2

11] = σ2 <∞.
Provided that N, p→∞ such that N

p
→ c ∈ (0,∞) then

µBN
w−→ µMP almost surely,

whose density is given by(
1− 1

c

)
+
δ0 + 1

2πcσ2x

√
(λ+ − x)(x− λ−)1[λ−,λ+](x) dx,

where (·)+ = max(0, ·) and λ± = σ2(1±
√
c)2.

Figure 11.1: Histogram of the eigenvalues of a Wishart matrix with N = 500 and
p = 1000. In yellow, the density of the Marchenko-Pastur distribution
for c = 0.5.
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Remark 11.3. (i) If c > 1 then 1 − 1
c
> 0 and we have an atom at 0 with mass

1− 1
c
. Since rankBN = min(N, p), BN has N − p zero eigenvalues such that

µBN = N − p
N

δ0 + 1
N

p∑
k=1

δλk

with
N − p
N

= 1− 1
N
p

→ 1− 1
c
.

If c < 1 and N < p then BN is invertible and does not have zero eigenvalues.

(ii) Observe that the non-zero eigenvalues of XXT and XTX are the same so that
we have

µ =
(

1− 1
c

)
δ0 + µ̃,

where µ̃ is the limiting distribution of XTX.

(iii) Apart from the Dirac measure at 0, the support of µMP is compact and is
spread on an interval of length 4σ2√c around the variance σ2.

(iv) The Marchenko-Pastur theorem is a universality result in the sense that the
limiting distribution depends on the distribution of the entries only through
the variance σ2.

(v) The mean and variance of the Marchenko-Pastur distribution are

∫
R

x dµMP(x) = σ2,

∫
R

x2 dµMP(x)−
∫

R

x dµMP(x)
2

= σ4

c
.
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Figure 11.2: The Marchenko-Pastur distribution density function for σ2 = 1. In
green c = 3, in orange c = 1 and in blue c = 0.4. The mass of the
distribution in the last case is 0.4, to which we should add a Dirac
mass at 0 with mass 0.6.

(vi) The Stieltjes transform of µMP is given by

gµMP(z) =
σ2(1− c)− z +

√
(z + λ+)(z − λ−)

2czσ2 .

It is a solution of the quadratic equation

zcσ2g(z)2 +
[
z + σ2(c− 1)

]
g(z) + 1 = 0.

(vii) As for the Wigner semicircle law, the Marchenko-Pastur theorem can be proven
via the moment method or analytically via the resolvent method.

Moment method: Since the support of µMP is compact, µMP is uniquely
determined by its moments and it is enough to show hat∫

xkµBN (x) N→∞−−−→
∫
xkµMP(x) almost surely

for any k ≥ 1. For this, it suffices to show that

• E
[∫
xkµBN (x)

]
N→∞−−−→

∫
xkµMP(x),

• Var
[∫
xkµBN (x)

]
≤ Ck

N2 ,
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and then invoke the Borel-Cantelli lemma.
Resolvent method: Show that for all z ∈ C+,

gBN (z) N→∞−−−→ gMP(z) almost surely.

To do this, we proceed as follows:

(1) gBN (z)− E [gBN (z)] N→∞−−−→ 0 almost surely (concentration)
(2) We prove that E [gBN (z)] satisfies the equation

zcσ2g(z)2 +
[
z + σ2(c− 1)

]
g(z) + 1 = εN (?)

with εN N→∞−−−→ 0.
(3) We prove the stability of (?).

“Close equation implies close solution.”

Theorem 11.4 (Bai-Yin). Let BN = 1
p
XNX T

N with XN = (Xij)i,j, where the Xij are
independently identically distributed, centered, have variance σ2 and E [X4

11] < ∞.
Then provided that N

p
→ c ∈ (0,∞),

λmax(BN) N→∞−−−→ σ2(1 +
√
c)2 almost surely,

λmin(BN) N→∞−−−→ σ2(1−
√
c)2 almost surely.

Remark 11.5. (i) The Marchenko-Pastur theorem gives a lower bound for λmax:

λmax(BN) ≥ σ2(1 +
√
c)2

(ii) The condition E [X4
11] < ∞ is necessary for the convergence of λmax to the

edge of the bulk.

11.1 Large covariance matrix
Let XN = (X1 . . . , XN) be a N×p matrix with independently identically distributed
centered entries of variance 1. Let RN be a deterministic hermitian positive semidef-
inite N ×N matrix. Then

YN = R
1
2
NXN =

(
R

1
2
NX1, . . . , R

1
2
NXp

)
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represents p independently identically distributed sample observations. Let us de-
note Yi = R

1
2
NXi ∈ RN and note that E [Yi] = 0 and E

[
YiY

T
i

]
= RN . If N is fixed

then by the law of large numbers,

BN = 1
p
R

1
2
NXNX T

NR
1
2
N

p→∞−−−→ RN almost surely.

This situation is sensibly different in the asymptotic setting where N, p → ∞ and
N
p
→ c ∈ (0,∞).

Theorem 11.6. Assume that the empirical spectral measure µRN converges weakly
to ν for N →∞. Then, provided that N, p→∞ such that N

p
→ c ∈ (0,∞):

(i) The equation

t(z) =
∫ 1
−z[1− λct(z)] + (1− c)λ dν(λ), z ∈ C+,

has a unique solution z 7→ t(z), which is the Stieltjes transform of a probability
measure µ, i.e.,

t(z) =
∫ 1
λ− z

dµ(z).

(ii) For all z ∈ C+, gBN (z) → t(z) almost surely if and only if µBN → µ almost
surely.

Remark 11.7. (i) The entries of the matrix YN = R
1
2
NXN are no longer indepen-

dent. In fact, the columns Yi of YN are independently identically distributed,
but we allow correlations between their components.

(ii) The covariance structure ofRN also appears in the limiting distribution through
the limiting measure ν.

(iii) In the independently identically distributed case RN = σ2IN , the covariance
of the entries is zero and only the variance σ2 shows up in the limiting distri-
bution, the Marchenko-Pastur distribution.

(iv) Contrary to the Marchenko-Pastur distribution, in this case we do not have
an explicit equation for the Stieltjes transform t(z). Numerical methods are
applied to approximate t(z) and then the inversion formula yields an approx-
imation of the limiting measure µ.

128



Figure 11.3: In red, the density of the limiting measure for c = 0.1, c = 0.3 and
c = 0.6. In blue, the 3 eigenvalues of the covariance matrix of the
population RN , each of equivalent multiplicity.

Remark 11.8. It seems clear that if the ratio c is small, we can somehow guess
some information on the covariance matrix RN (eigenvalues in blue). However, if c
is not so small (c = 0.6) it is somehow impossible to guess the eigenvalues of RN

from the figure. In other words, the information BN gives is not as direct as in the
conventional setting.

11.2 Small perturbations
Consider the case

RN = σ2
(
IN +

K∑
l=1

θlulu
T
l

)
,

where K is a fixed number, the θl > 0 and the ul are deterministic orthonormal
vectors. We have seen that when RN = σ2IN then µσ2

p
XNXTN

converges weakly to
µMP. We shall see how the convergence of the largest eigenvalue is affected by the
parameters θl and ul. We will consider the case K = 1 (rank 1 perturbation),

RN = σ2
(
IN + θuuT

)
,

with σ > 0 and ‖u‖ = 1.

Theorem 11.9. Provided that N, p→∞ such that N
p
→ c ∈ (0,∞) then:

(i) If θ ≤
√
c then

λmax(BN) N→∞−−−→ σ2
(
1 +
√
c
)2

almost surely.
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(ii) If θ >
√
c then

λmax(BN) N→∞−−−→ σ2(1 + θ)
(

1 + c

θ

)
almost surely.

Figure 11.4: In red, the density of the Marchenko-Pastur distribution. In blue, the
histogram of the eigenvalues. The red parts represent the largest eigen-
value. The first two simulations correspond to a simple perturbation,
whereas the last one corresponds to a double perturbation.

Remark 11.10. (i) We can easily verify that if θ >
√
c then

σ2(1 + θ)
(

1 + c

θ

)
> σ2

(
1 +
√
c
)2
.

(ii) The intensity of the perturbation θ has an influence on the behavior of the
largest eigenvalue. It converges to the edge of the support of the Marchenko-
Pastur distribution if θ is sufficiently small and separates otherwise.

Figure 11.5: The limit of the largest eigenvalue λmax as a function of the perturba-
tion θ.
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12 Several independent GUE and
asymptotic freeness

Up to now, we have only considered limits N →∞ of one random matrix AN , but
often one has several matrix ensembles and would like to understand the “joint”
distribution, e.g., in order to use them as building blocks for more complicated
random matrix models. As an example, R 1

2XNX T
NR

1
2 is built out of the two random

matrices XN and RN . Note that a deterministic matrix like RN is also a special case
of random matrices.
Remark 12.1. (i) Consider two random matrices AN = (aij)Ni,j=1, BN = (bij)Ni,j=1,

where the entries aij, bij are defined on the same probability space. What do
we mean by the joint distribution of the matrices in which we are interested as
N →∞? Note that in general our analytical approach breaks down if AN and
BN do not commute, since then we cannot diagonalize them simultaneously,
hence it makes no sense to talk about a joint distribution of AN and BN .
The notion µAN ,BN has no clear analytic meaning. What still makes sense in
the multivariate case is the combinatorial approach via mixed moments with
respect to the normalized trace tr. Hence we consider the collection of all
mixed moments

tr
(
A

(N)
i1 · · ·A

(N)
im

)
in AN and BN , with m ∈ N, i1, . . . , im ∈ {1, 2}, A(N)

1 = AN and A(N)
2 = BN ,

as the joint distribution of AN and BN and denote this by µAN ,BN . We want
to understand, in interesting cases, the behavior of µAN ,BN as N →∞.

(ii) In the case of one (selfadjoint) matrix A, µA has two meanings:
Analytic: µA = 1

N
(δλ1 + · · ·+ δλN ) is a probability measure on R.

Combinatorial: µA is given by all moments tr(Ak) for all k ≥ 1.
These two points of view are the same via

tr(Ak) =
∫
tk dµA(t).

131



In the case of two matrices A1, A2 the notion µA1,A2 has only one meaning,
namely the collection of all mixed moments

tr (Ai1 · · ·Aim)

with m ∈ N and i1, . . . , im ∈ {1, 2}. If A1 and A2 do not commute then there
exists no probability measure µ on R2 with

tr (Ai1 · · ·Aim) =
∫
ti1 · · · tim dµ(t1, t2)

for all m ∈ N and i1, . . . , im ∈ {1, 2}.

12.1 Joint moments of independent GUEs
We will now consider the simplest case of several random matrices, namely r GUEs
A

(N)
1 , . . . , A(N)

r , which we assume to be independent of each other, i.e., we have

A
(N)
i = 1√

N

(
a

(i)
kl

)N
k,l=1

,

where i = 1, . . . , r, each A(N)
i is a GUE and

{
a

(1)
kl ; k, l = 1, . . . , N

}
, . . . ,

{
a

(r)
kl ; k, l = 1, . . . , N

}
are independent sets of Gaussian random variables. Equivalently, this can be charac-
terized by the requirement that all entries of all matrices together form a collection of
independent standard Gaussian variables (real on the diagonal, complex otherwise).
Hence we can express this again in terms of the Wick formula as

E
[
a

(i1)
k1l1 · · · a

(im)
kmlm

]
=

∑
π∈P2(m)

Eπ
[
a

(i1)
k1l1 , . . . , a

(im)
kmlm

]

for all m ∈ N, 1 ≤ k1, l1, . . . , km, lm ≤ N and 1 ≤ i1, . . . , im ≤ r and where the
second moments are given by

E
[
a(i)
pq a

(j)
kl

]
= δplδqkδij.
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Now we can essentially repeat the calculations from Remark 2.14 for our mixed
moments:

E [tr(Ai1 · · ·Aim)] = 1
N1+m

2

N∑
k1,...,km=1

E
[
a

(i1)
k1k2a

(i2)
k2k3 · · · a

(im)
kmk1

]

= 1
N1+m

2

N∑
k1,...,km=1

∑
π∈P2(m)

Eπ
[
a

(i1)
k1k2 , a

(i2)
k2k3 , . . . , a

(im)
kmk1

]

= 1
N1+m

2

N∑
k1,...,km=1

∑
π∈P2(m)

∏
(p,q)∈π

E
[
a

(ip)
kpkp+1a

(iq)
kqkq+1

]

= 1
N1+m

2

N∑
k1,...,km=1

∑
π∈P2(m)

∏
(p,q)∈π

[kp = kq+1] [kq = kp+1] [ip = iq]

= 1
N1+m

2

∑
π∈P2(m)
(p,q)∈π
ip=iq

N∑
k1,...,km=1

∏
p

[
kp = kγπ(p)

]

= 1
N1+m

2

∑
π∈P2(m)
(p,q)∈π
ip=iq

N#(γπ),

where γ =
(
1 2 · · · m

)
is the shift by 1 modulo m. Hence we get the same kind

of genus expansion for several GUEs as for one GUE. The only difference is, that in
our pairing we only allow to connect the same matrices.
Notation 12.2. For a given i = (i1, . . . , im) with 1 ≤ i1, . . . , im ≤ r we say that
π ∈ P2(m) respects i if we have ip = iq for all (p, q) ∈ π. We put

P [i]
2 (m) = {π ∈ P2(m); π respects i}

and also
NC[i]

2 (m) = {π ∈ NC2(m); π respects i} .
Theorem 12.3 (Genus expansion of independent GUEs). Let A1, . . . , Ar be r in-
dependent N × N GUEs. Then we have for all m ∈ N and all i1, . . . , im ∈ [r]
that

E [tr(Ai1 · · ·Aim)] =
∑

π∈P [i]
2 (m)

N#(γπ)−m2 −1

and thus
lim
N→∞

E [tr(Ai1 · · ·Aim)] = #NC[i]
2 (m).
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Proof. The genus expansion follows from our computation before. The limit for
N →∞ follows as in Theorem 2.12 from the fact that

lim
N→∞

N#(γπ)−m2 −1 =

1, π ∈ NC2(m),
0, π 6∈ NC2(m).

The index tuple (i1, . . . , im) has no say in this limit.

Remark 12.4. We would like to find some structure in the limiting moments. We
prefer to talk directly about the limit instead of making asymptotic statements. In
the case of one GUE, we had the semicircle µW as a limiting analytic object. Now
we do not have an analytic object in the limit, but we can organize our distribution
as the limit of moments in a more algebraic way.

Definition 12.5. (i) Let A = C〈s1, . . . , sr〉 be the algebra of polynomials in the
non-commuting variables s1, . . . , sr. I.e., there are no non-trivial relations
between s1, . . . , sr and it is the linear span of the monomials si1 · · · sim for m ≥
0 and i1, . . . , im ∈ [r]. Multiplication for monomials is given by concatenation.

(ii) On this algebra A we define a unital linear functional ϕ : A → C by ϕ(1) = 1
and

ϕ(si1 · · · sim) = lim
N→∞

E [tr(Ai1 · · ·Aim)] = #NC[i]
2 (m).

(iii) We also address (A, ϕ) as a non-commutative probability space and
s1, . . . , sr ∈ A as non-commutative random variables. The moments
of s1, . . . , sr are the ϕ(si1 · · · sim) and the collection of those moments is the
(joint) distribution of s1, . . . , sr.

Remark 12.6. (i) Note that if we consider only one of the si, then its distribution
is just the collection of Catalan numbers, which we understand quite well

(ii) If we consider all s1, . . . , sr, then their joint distribution is a large collection
of numbers. We claim that the following theorem discovers some important
structure in those.

Theorem 12.7. Let A = C〈s1, . . . , sr〉 and let ϕ : A → C be defined by

ϕ(si1 · · · sim) = #NC[i]
2 (m)

as before. Then for all m ≥ 1, i1, . . . , im ∈ [r] with

i1 6= i2, i2 6= i3, . . . , im−1 6= im
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and all polynomials p1, . . . , pm in one variable such that

ϕ (pk(sik)) = 0

we have that
ϕ (p1(si1) · · · pm(sim)) = 0.

In other words: The alternating product of centered variables is centered.

We say that s1, . . . , sr are free (or freely independent); in terms of the random
matrices, we say that A(N)

1 , . . . , A(N)
r are asymtotially free.

Proof. It suffices to prove the statement for polynomials of the form

pk(sik) = spkik − ϕ
(
spkik

)
for any power pk, since general polynomials can be written as linear combinations
of those. The general statement then follows by linearity. So we have to prove that

ϕ
[(
sp1
i1 − ϕ

(
sp1
i1

))
· · ·

(
spmim − ϕ

(
spmim

))]
= 0.

We have

ϕ
[(
sp1
i1 − ϕ

(
sp1
i1

))
· · ·

(
spmim − ϕ

(
spmim

))]
=

∑
M⊂[m]

(−1)|M |
∏
j∈M

ϕ
(
s
pj
ij

)
ϕ

 ∏
j 6∈M

s
pj
ij


with

ϕ
(
s
pj
ij

)
= ϕ

(
sij · · · sij

)
= #NC2(pj)

and

ϕ

 ∏
j 6∈M

s
pj
ij

 = #NC[respects indices]
2

 ∑
j 6∈M

pj

 .
Let us put

I1 = {1, . . . , p1}
I2 = {p1 + 1, . . . , p1 + p2}

...
Im = {p1 + p2 + · · ·+ pm−1, . . . , p1 + p2 + · · ·+ pm}
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and I = I1 ∪ I2 ∪ · · · ∪ Im. Denote

[. . . ] = [i1, . . . , i1, i2, . . . , i2, . . . , im, . . . , im].

Then

∏
j∈M

ϕ
(
s
pj
ij

)
ϕ

 ∏
j 6∈M

s
pj
ij

 = #{π ∈ NC[... ]
2 (I); for all j ∈M all elements

in Ij are only paired amongst each other}

Let us denote

NC[... ]
2 (I : j) = {π ∈ NC[... ]

2 (I); elements in Ij are only paried amongst each other}.

Then, by the inclusion-exclusion formula,

ϕ
[(
sp1
i1 − ϕ

(
sp1
i1

))
· · ·

(
spmim − ϕ

(
spmim

))]
=

∑
M⊂[m]

(−1)|M | ·#
 ⋂
j∈M
NC[... ]

2 (I : j)


= #
NC[... ]

2 (I)\
⋃
j

NC[... ]
2 (I : j)

 .
These are π ∈ NC[... ]

2 (I) such that at least one element of each interval Ij is paired
with an element from another interval Ik. Since

i1 6= i2, i2 6= i3, . . . , im−1 6= im

we cannot connect neighboring intervals and each interval must be connected to
another interval in a non-crossing way. But there is no such π, hence

ϕ
[(
sp1
i1 − ϕ

(
sp1
i1

))
· · ·

(
spmim − ϕ

(
spmim

))]
= #

NC[··· ]
2 (I)\

⋃
j

NC[··· ]
2 (I : j)

 = 0

as claimed.

Remark 12.8. (i) Note that in Theorem 12.7 we have traded the explicit descrip-
tion of our moments for implicit relations between the moments.

(ii) For example, the simplest relations from Theorem 12.7 are

ϕ
(
[spi − ϕ(spi )1][sqj − ϕ(sqj)1]

)
= 0,
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for i 6= j, which can be reformulated to

ϕ(spi s
q
j)− ϕ(spi 1)ϕ(sqj)− ϕ(spi )ϕ(sqj1) + ϕ(spi )ϕ(sqj)ϕ(1) = 0,

i.e.,
ϕ(spi s

q
j) = ϕ(spi )ϕ(sqj).

Those relations are quickly getting more complicated. For example,

ϕ [(sp1
1 − ϕ(sp1

1 )1)(sq1
2 − ϕ(sq1

2 )1)(sp2
1 − ϕ(sp2

1 )1)(sq2
2 − ϕ(sq2

2 )1)] = 0

leads to

ϕ (sp1
1 s

q1
2 s

p2
1 s

q2
2 ) = ϕ

(
sp1+p2

1

)
ϕ (sq1

2 )ϕ (sq2
2 )

+ ϕ (sp1
1 )ϕ (sp2

1 )ϕ
(
sq1+q2

2

)
− ϕ (sp1

1 )ϕ (sq1
2 )ϕ (sp2

1 )ϕ (sq2
2 ) .

(iii) So one might ask: What is it good for to find those relations between the
moments, if we know the moments in a more explicit form anyhow?
Answer: Those relations occur in many more situations. For example, inde-
pendent Wishart matrices satisfy the same relations, even though the explicit
form of their mixed moments is quite different from the GUE case. Further-
more, we can control what happens with these relations much better than
with the explicit moments if we deform our setting or construct new random
matrices out of other ones. Not to mention that those relations also show up
in very different corners of mathematics (like operator algebras).
To make a long story short: Those relations from Theorem 12.7 are really
worth being investigated further, not just in a random matrix context, but
also for its own sake. This will be done in the lecture Free Probability Theory
next term!
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