Assignments for the lecture on

Random Matrices
Winter term 2019/20

Assignment 2

Hand in on Thursday, 31.10.19, Mailbox 040.

Exercise 1 (10 points).
Using your favorite programing language or computer algebra system, generate $N \times N$ random matrices for $N=3,9,100$. Produce in each case a plot of the eigenvalue distribution for a single random matrix and as well a plot for the average over a high number of matrices of the considered size. The entries should be independent identically distributed (i.i.d.) according to
(i) the Bernoulli distribution $\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)$, where δ_{x} denotes the Dirac measure with atom x.
(ii) the normal distribution.

Exercise 2 (10 points).
Prove Proposition 2.2 from the lecture notes, i.e. compute the moments of a standard Gaussian random variable:

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} t^{n} e^{-\frac{t^{2}}{2}} \mathrm{~d} t= \begin{cases}0 & n \text { odd } \\ (n-1)!! & n \text { even }\end{cases}
$$

Exercise 3 (10 points).
Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent standard complex Gaussian random variables with mean 0 and $\mathbb{E}\left[\left|Z_{i}\right|^{2}\right]=1$ for $i=1, \ldots, n$.
(i) Show that

$$
\mathbb{E}\left[Z_{i_{1}} \cdots Z_{i_{r}} \overline{Z_{j_{1}}} \cdots \overline{Z_{j_{r}}}\right]=\#\left\{\sigma \in S_{r}: i_{k}=j_{\sigma(k)} \text { for } k=1, \ldots, r\right\} .
$$

(ii) Show that

$$
\mathbb{E}\left[Z_{1}^{n}{\overline{Z_{1}}}^{m}\right]= \begin{cases}0 & m \neq n \\ n! & m=n\end{cases}
$$

Exercise 4 (10 points).
Let $A=\left(a_{i j}\right)_{i, j=1}^{N}$ be a Gaussian (GUE) random matrix with entries $a_{i i}=x_{i i}$ and $a_{i j}=$ $x_{i j}+\sqrt{-1} y_{i j}$. Recall that this means that $x_{i j}(i \leq j)$ and $y_{i j}(i<j)$ are real i.i.d. Gaussian random variables, normalized such that $\mathbb{E}\left[\left|a_{i j}\right|^{2}\right]=\frac{1}{N}$. Consider the random vector

$$
\left(x_{11}, \ldots, x_{N N}, x_{12}, \ldots, x_{1 N}, \ldots, x_{N-1 N}, y_{12}, \ldots, y_{1 N}, \ldots, y_{N-1 N}\right)
$$

in $\mathbb{R}^{N^{2}}$ and show that it has the density

$$
C \exp \left(-N \frac{\operatorname{Tr}\left(A^{2}\right)}{2}\right) \mathrm{d} A,
$$

where C is a constant and

$$
\mathrm{d} A=\prod_{i=1}^{N} \mathrm{~d} x_{i i} \prod_{i<y} \mathrm{~d} x_{i j} \mathrm{~d} y_{i j} .
$$

