

Assignments for the lecture on Random Matrices Winter term 2019/20

Assignment 3

Hand in on Monday, 10.11.19, Mailbox 040.

Exercise 1 (20 points).

Produce histograms for various random matrix ensembles

- (i) Produce histograms for the averaged situation: average over 1000 realizations for the eigenvalue distribution of a an $N \times N$ Gaussian random matrix (or alternatively ± 1 entries) and compare this with one random realization for N = 5, 50, 500, 1000.
- (ii) Check via histograms that Wigner's semicircle law is insensitive to the common distribution of the entries as long as those are independent; compare typical realisations for N = 100 and N = 3000 for different distributions of the entries: ± 1 , Gaussian, uniform distribution on the interval [-1, +1].
- (iii) Check what happens when we give up the constraint that the the entries are centered; take for example the uniform distribution on [0, 2].
- (iv) Check whether the semicircle law is sensitive to what happens on the diagonal of the matrix. Choose one distribution (e.g. Gaussian) for the off-diagonal elements and another distribution for the elements on the diagonal (extreme case: put the diagonal equal to zero).
- (v) Try to see what happens when we take a distribution for the entries which does not have finite second moment; for example, the Cauchy distribution.

Exercise 2 (10 points).

In class we have seen that the *m*-th moment of a Wigner matrix is asymptotically counted by the number of partitions $\sigma \in \mathcal{P}(m)$, for which the corresponding graph \mathcal{G}_{σ} is a tree; then the corresponding walk $i_1 \to i_2 \to \cdots \to i_m \to i_1$ (where ker $i = \sigma$) uses each edge exactly twice, in opposite directions. Assign to such a σ a pairing by opening/closing a pair when an edge is used for the first/second time in the corresponding walk.

- (i) Show that this map gives a bijection between the $\sigma \in \mathcal{P}(m)$ for which \mathcal{G}_{σ} is a tree and non-crossing pairings $\pi \in NC_2(m)$.
- (ii) Is there a relation between σ and $\gamma \pi$, under this bijection?

Exercise 3 (10 points).

For a probability measure μ on \mathbb{R} we define its Cauchy transform G_{μ} by

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{1}{z-t} d\mu(t)$$

for all $z \in \mathbb{C}^+ := \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Show the following for a Cauchy transform $G = G_{\mu}$.

- (i) $G: \mathbb{C}^+ \to C^-$, where $\mathbb{C}^- := \{z \in \mathbb{C} \mid \text{Im}(z) < 0\}.$
- (ii) G is analytic on \mathbb{C}^+ .
- (iii) We have

$$\lim_{y \to \infty} iyG(iy) = 1 \quad \text{and} \quad \sup_{y > 0, x \in \mathbb{R}} y|G(x + iy)| = 1.$$