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Exercise 1.
We will address here concentration estimates for the law of large numbers, and see that
control of higher moments allows stronger estimates. Let Xi be a sequence of independent
and identically distributed random variables with common mean µ = E[Xi]. We put

Sn :=
1

n

n∑
i=1

Xi.

(i) Assume that the variance V ar[Xi] is �nite. Prove that we have then the weak law
of large numbers, i.e., convergence in probability of Sn to the mean: for any ε > 0

P (ω | |Sn(ω)− µ| ≥ ε)→ 0, for n→∞.

(ii) Assume that the fourth moment of the Xi is �nite, E[X
4
i ] <∞. Show that we have

then the strong law of large numbers, i.e.,

Sn → µ, almost surely.

(Recall that by Borel-Cantelli it su�ces for the almost sure convergence to show
that

∞∑
n=1

P (ω | |Sn(ω)− µ| ≥ ε) <∞.)

One should also note that our assumptions for the weak and strong law of large
numbers are far from optimal. Even the existence of the variance is not needed for
them, but for proofs of such general versions one needs other tools then our simple
consequences of Cheyshev inequality.

Exercise 2.
Let XN = 1√

N
(xij)

N
i,j=1, where the xij are all (without symmetry condition) independent

and identically distributed with standard complex Gaussian distribution. We denote the
adjoint (i.e., congugate transpose) of XN by X∗N .

(i) By following the ideas from our proof of Wigner's semicircle law for the GUE in
Chapter 2 show the following: the averaged trace of any ∗-moment in XN and X∗N ,
i.e.,

E[tr(X
p(1)
N · · ·Xp(m)

N )] where p(1), . . . , p(m) ∈ {1, ∗}



is for N → ∞ given by the number of non-crossing pairings π in NC2(m) which
satisfy the additional requirement that each block of π connects an X with an X∗.

(ii) Use the result from part (i) to show that the asymptotic averaged eigenvalue dis-
tribution of WN := XNX

∗
N is the same as the square of the semicircle distribution,

i.e. the distribution of Y 2 if Y has a semicircular distribution.

(iii) Calculate the explicit form of the asymptotic averaged eigenvalue distribution of
WN .

(iv) Again, the convergence is here also in probability or almost surely. Produce histo-
grams of samples of the random matrix WN for large N and compare it with the
analytic result from (iii).

Exercise 3.
We consider now random matrices WN = XNX

∗
N as before, but now we allow the XN to

be rectangular matrices, i.e., of the form

XN =
1
√
p
(xij) 1≤i≤N

1≤j≤p
,

where again all xij are independent and identically distributed. We allow now real or
complex entries. (In case the entries are real, X∗N is of course just the transpose XT

N .)
Such matrices are called Wishart matrices. Note that we can now not multiply XN and
X∗N in arbitrary order, but alternating products as in WN make sense.

(i) What is the general relation between the eigenvalues of XNX
∗
N and the eigenvalues

of X∗NXN . Note that the �rst is an N × N matrix, whereas the second is a p × p
matrix.

(ii) Produce histograms for the eigenvalues of WN := XNX
∗
N for N = 50, p = 100 as

well as for N = 500, p = 1000, for di�erent distributions of the xij;

• standard real Gaussian random variables

• standard complex Gaussian random variables

• Bernoulli random variables, i.e., xij takes on values +1 and −1, each with
probability 1/2.

(iii) Compare your histograms with the density, for c = 0.5 = N/p, of the Marchenko-
Pastur distribution which is given by√

(λ+ − x)(x− λ−)
2πcx

1[λ−,λ+](x), where λ± :=
(
1±
√
c
)2
.


