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Exercise 1 (10 points).
In this exercise we de�ne the Hermite polynomials Hn by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2

and want to show that they are the same polynomials we de�ned in class and that they
satisfy the recursion relation. So, starting from the above de�nition show the following.

(i) For any n ≥ 1,
xHn(x) = Hn+1(x) + nHn−1(x).

(ii) Hn is a monic polynomial of degree n. Furthermore, it is an even function if n is
even and an odd function if n is odd.

(iii) TheHn are orthogonal with respect to the Gaussian measure dγ(x) = (2π)−1/2e−x2/2dx.
More precisely, show the following:∫

R
Hn(x)Hm(x)dγ(x) = δnmn!

Exercise 2 (20 points).
Produce histograms for the averaged eigenvalue distribution of a GUE(N) and compare
this with the exact analytic density from class.

(i) Rewrite �rst the averaged eigenvalue density

pN(µ) =
1

N
KN(µ, µ) =

1√
2π

1

N

N−1∑
k=0

1

k!
Hk(µ)2e−x2/2

for the unnormalized GUE(N) to the density qN(λ) for the normalized GUE(N)
(with second moment normalized to 1).

(ii) Then average over su�ciently many normalized GUE(N), plot their histograms, and
compare this to the analytic density qN(λ). Do this at least forN = 1, 2, 3, 5, 10, 20, 50.

(iii) Check also numerically that qN converges, for N →∞, to the semicircle.

(iv) For comparison, also average over GOE(N) and over Wigner ensembles with non-
Gaussian distribution for the entries, for some small N .



Motivation (For exercise 3).
We have seen that the eigenvalues of random matrices repel each other. This becomes even
more apparent when we consider process versions of our random matrices, where the ei-
genvalue processes yield then non-intersecting paths. We want to check this numerically in
this exercise. For this we consider process versions of the GUE(N) and GOE(N), those are
called Dyson Brownian motions. They are de�ned as (for all t ≥ 0) AN(t) := (aij(t))

N
i,j=1,

where each aij(t) is a classical Brownian motion (complex or real) and they are indepen-
dent, apart from the symmetry condition aij(t) = āji(t) for all t ≥ 0 and all i, j = 1, . . . , N .
The eigenvalues λ1(t), . . . , λN(t) of AN(t) give then N non-intersecting Brownian motions.
We will approximate the Dyson Brownian motion by its discretized random walk version
and plot the corresponding walks of the eigenvalues.

Exercise 3 (20 points).
Check the repulsion of Eigenvalues numerically by following the three steps:

(i) Approximate the Dyson Brownian motion by its discretized random walk version

AN(k) :=
k∑

i=1

∆ · A(i)
N , for 1 ≤ k ≤ K

where A
(1)
N , . . . , A

(K)
N are K independent normalized GUE(N) random matrices. ∆

is a time increment. Generate a random realization of such a Dyson random walk
AN(k) and plot the N eigenvalues λ1(k), . . . , λN(k) of AN(k) versus k in the same
plot to see the time evolution of the N eigenvalues. Produce at least plots for three
di�erent values of N .
Hint: Start with N = 15, ∆ = 0.01, K = 1500, but also play around with those
parameters.

(ii) For the same parameters as in part (i) consider the situation where you replace
GUE by GOE and produce corresponding plots. What is the e�ect of this on the
behaviour of the eigenvalues?

(iii) For the three considered cases of N in parts (i) and (ii), plot also N independent
random walks in one plot, i.e.,

λ̃N(k) :=
k∑

i=1

∆ · x(i), for 1 ≤ k ≤ K

where x(1), . . . , x(K) are K independent real standard Gaussian random variables.


