UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Prof. Dr. Roland Speicher

M.Sc. Tobias Mai

Übungen zur Vorlesung Analysis I

Wintersemester 2015/2016

Blatt 12

Abgabe: Mittwoch, 3.2.2016, 10:15 Uhr in den Briefkästen im Untergeschoss von Gebäude E2 5

Hinweis: Dies ist das letzte bewertete Übungsblatt für dieses Semester!

Aufgabe 1 (10 Punkte). Fassen Sie die folgenden Ausdrücke als Riemannsche Summen auf und berechnen Sie damit ihre Grenzwerte für $n \to \infty$.

(a)
$$\frac{1}{n} \sum_{k=1}^{n} \frac{\cos(\frac{k}{n})}{1 + \sin(\frac{k}{n})}$$

(b)
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

Aufgabe 2 (10 Punkte). Seien a, b > 0. Berechnen Sie den Flächeninhalt der Ellipse

$$E := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$$

Aufgabe 3 (10 Punkte). Berechnen Sie die folgenden unbestimmten Integrale.

(a)
$$\int \sin^2(t) e^{-t} dt$$

(b)
$$\int \frac{1}{1 + \cos(t)} dt$$
 Tipp: $\frac{\sin(t)}{1 + \cos(t)}$

(b)
$$\int \frac{1}{1 + \cos(t)} dt$$
 Tipp:
$$\frac{\sin(t)}{1 + \cos(t)} = u$$

(c)
$$\int \sinh(t) \cos(t) dt$$
 wobei
$$\sinh(t) := \frac{1}{2} (e^t - e^{-t})$$

(d)
$$\int \frac{t^3}{\sqrt{t^2+1}} dt$$
 Tipp: $t^2+1=u$

(e)
$$\int \frac{1}{\sqrt{1+e^t}} \, \mathrm{d}t$$

Aufgabe 4 (10 Punkte). Sei $f : [a, b] \to \mathbb{R}$ eine Funktion.

- (a) Zeigen Sie, dass f eine Regelfunktion ist, falls f monoton wachsend ist auf [a, b].
- (b) Ist f auch dann schon eine Regelfunktion, wenn f nur auf (a, b) als monoton wachsend vorausgesetzt wird? (Beweis oder Gegenbeispiel)

bitte wenden

Aufgabe 5 (10 Punkte + 5 Zusatzpunkte*).

(a) Gegeben seien zwei Regelfunktionen $f,g:[a,b]\to\mathbb{R}$ auf einem Intervall [a,b] mit $-\infty < a < b < \infty$. Es gelte $f\leq g$ (d.h. $f(x)\leq g(x)$ für alle $x\in [a,b]$). Zeigen Sie, dass gilt

$$\int_a^b f(x) \, \mathrm{d}x \le \int_a^b g(x) \, \mathrm{d}x.$$

(b) Gegeben seien $-\infty < a < b < c < \infty$. Zeigen Sie: Ist $f:[a,c] \to \mathbb{R}$ eine beliebige Regelfunktion, dann sind auch die Einschränkungen von f auf die Teilintervalle [a,b] und [b,c] wieder Regelfunktionen und es gilt

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

(c)* Für jedes $n \in \mathbb{N}$ sei $f_n : [a, b] \to \mathbb{R}$ eine Regelfunktion auf dem Intervall [a, b] mit $-\infty < a < b < \infty$. Weiter gebe es eine Funktion $f : [a, b] \to \mathbb{R}$ mit der Eigenschaft

$$\lim_{n \to \infty} ||f_n - f||_{[a,b]} = 0.$$

Zeigen Sie, dass dann f ebenfalls eine Regelfunktion ist und dass gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx.$$

Zusatzaufgabe* (10 Punkte). In dieser Aufgabe wollen wir die Irrationalität von π^2 (und damit natürlich insbesondere die Irrationalität von π selbst) beweisen.

Hierzu verfahren wir wie folgt: Wir nehmen an, die Zahl π^2 wäre entgegen der Behauptung rational. Wegen $\pi^2 > 0$ können wir dann $a, b \in \mathbb{N}$ finden mit $\pi^2 = \frac{a}{b}$. Beweisen Sie nun unter dieser Annahme die folgenden Aussagen für beliebiges aber festes $n \in \mathbb{N}$ und führen Sie diese anschließend (durch geeignete Wahl von n) zu einem Widerspruch:

(a) An den beiden Stellen 0 und 1 sind alle Ableitungen der Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{1}{n!} x^n (1-x)^n$$

ganzzahlig. Ferner gilt $0 < f(x) < \frac{1}{n!}$ für alle $x \in (0, 1)$.

(b) Die Werte F(0) und F(1) der Funktion $F: \mathbb{R} \to \mathbb{R}$, die gegeben ist durch

$$F(x) := b^n \sum_{k=0}^{n} (-1)^k \pi^{2(n-k)} f^{(2k)}(x),$$

sind beide ganzzahlig und es gilt

$$I := \pi \int_0^1 a^n f(x) \sin(\pi x) \, dx = F(0) + F(1).$$

Hinweis: Zeigen Sie zunächst, dass die Ableitung der Funktion $G : \mathbb{R} \to \mathbb{R}$ mit $G(x) := F'(x)\sin(\pi x) - \pi F(x)\cos(\pi x)$ gegeben ist durch $G'(x) = \pi^2 a^n f(x)\sin(\pi x)$.

(c) Für das Integral I aus (b) gilt $0 < I \le \frac{\pi a^n}{n!}$.