UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Moritz Weber Stefan Jung

Übungen zur Vorlesung Analysis II

Sommersemester 2016

Blatt 4 Abgabe: Mittwoch, 25.05.2016, 17:00 Uhr

in den Briefkästen im Untergeschoss des Gebäudes E2.5

Aufgabe 1 (20 Punkte!). Sei X eine Menge und $\tau := \{A \subseteq X \mid X \setminus A \text{ ist endlich}\} \cup \{\emptyset\}.$

- (a) Zeigen Sie, dass τ eine Topologie auf X ist.
- (b) Zeigen Sie, dass τ die diskrete Topologie ist (dh. $\tau = \mathcal{P}(X)$), wenn X endlich ist.
- (c) Zeigen Sie, dass X kompakt ist.
- (d) Charakterisieren Sie alle abgeschlossenen Mengen in X.
- (e) Charakterisieren Sie alle kompakten Mengen in X.
- (f) Sei $U \subseteq X$ offen. Berechnen Sie den Abschluss von U.
- (g) Charakterisieren Sie alle stetigen Funktionen $f: X \to X$.

Bemerkung: Diese Topologie wird nicht von einer Metrik induziert, dh. " $B(x, \varepsilon)$ " macht hier keinen Sinn.

Aufgabe 2 (**20 Punkte!**). Führen Sie die Beweise zu Bemerkung 4.3 der Vorlesung aus: Zeigen Sie:

- (a) Ist $A \subseteq \mathcal{C}[0,1]$ endlich, so ist A gleichgradig stetig.
- (b) Konvergiert eine Folge $(f_n)_{n\in\mathbb{N}}$ in $\mathcal{C}[0,1]$ gleichmäßig gegen $f\in\mathcal{C}[0,1]$, so ist $A:=\{f_n|n\in\mathbb{N}\}\cup\{f\}$ gleichgradig stetig.
- (c) Der Abschluss \bar{A} einer gleichgradig stetigen Teilmenge $A \subset \mathcal{C}[0,1]$ ist wieder gleichgradig stetig.

bitte wenden

Aufgabe 3 (10 Punkte). Zeigen Sie, dass die geraden Polynome, also die Polynome der Form

$$p(x) = \sum_{k=0}^{n} \alpha_k x^{2k}, \qquad n \in \mathbb{N}_0, \quad \alpha_1, \dots, \alpha_n \in \mathbb{R}$$

dicht in C[0,1] sind. Warum sind sie nicht dicht in C[-1,1]?

Zusatzaufgabe* (10 Punkte). Sei X ein kompakter metrischer Raum. Sei Y ein metrischer Raum und sei $f: X \to Y$ eine stetige, bijektive Funktion. Zeigen Sie, dass die Umkehrfunktion f^{-1} stetig ist. Zeigen Sie auch, dass die Aussage falsch ist, wenn X nicht kompakt ist.