UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher Stefan Jung

Übungen zur Vorlesung Analysis III

Wintersemester 2016/2017

Blatt 1

Abgabe: Donnerstag, 03.11.2016, 12:00 Uhr in den Briefkästen im Untergeschoss von Gebäude E2 5

Aufgabe 1 (10 Punkte). Sei $X = \{1, 2, 3, 4, 5, 6\}$ und \mathcal{M} die (bezüglich Inklusion) kleinste σ -Algebra auf X, die die Teilmengen $\{1, 2\}$, $\{1, 2, 3\}$ und $\{3, 4, 5, 6\}$ enthält. Man beschreibe \mathcal{M} . Gehört $\{2, 4\}$ zu \mathcal{M} ? Finden Sie alle Maße μ auf \mathcal{M} .

Aufgabe 2 (10 Punkte). Sei X eine Menge und sei $\wp(X)$ ihre Potenzmenge. Eine Teilmenge $\mathcal{A} \subseteq \wp(X)$ heißt Algebra, falls gilt:

- (i) $X \in \mathcal{A}$.
- (ii) Für $A \in \mathcal{A}$ ist auch $X \setminus A \in \mathcal{A}$.
- (iii) Für $A, B \in \mathcal{A}$ ist auch $A \cup B \in \mathcal{A}$.

Zeigen Sie:

- (a) $\mathcal{A} := \{ A \subseteq X | A \text{ endlich oder } X \setminus A \text{ endlich} \}$ ist eine Algebra.
- (b) Die Algebra \mathcal{A} aus Aufgabenteil (a) ist genau dann eine σ -Algebra, wenn X eine endliche Menge ist.
- (c) Ist \mathcal{A} eine beliebige Algebra, so gehört die symmetrische Differenz

$$A\Delta B:=(A\backslash B)\cup(B\backslash A)$$

zweier Elemente $A, B \in \mathcal{A}$ ebenfalls zu \mathcal{A} .

Aufgabe 3 (10 Punkte). Sei $f: X \to Y$ eine Abbildung zwischen zwei Mengen X und Y. Zeigen Sie:

(a) Ist \mathcal{B} eine σ -Algebra auf Y, so stellt

$$\mathcal{A} := \{ f^{-1}(B) | B \in \mathcal{B} \} \subseteq \wp(X)$$

eine σ -Algebra auf X dar.

(b) Ist \mathcal{A} eine σ -Algebra auf X, so stellt

$$\mathcal{B} := \{ B | f^{-1}(B) \in \mathcal{A} \} \subseteq \wp(Y)$$

eine σ -Algebra auf Y dar.

Aufgabe 4 (10 Punkte). Jede σ -Algebra enthält entweder endlich viele oder überabzählbar unendlich viele Elemente.

Hinweis: Gehen Sie von einer abzählbaren σ -Algebra \mathcal{A} auf einer Menge X aus und führen Sie die Annahme, dass \mathcal{A} nicht endlich ist, durch die Konstruktion einer injektiven Abbildung $\Phi : \wp(\mathbb{N}) \to \mathcal{A}$ zu einem Widerspruch. Betrachten Sie dazu die Mengen

$$M_x := \bigcap_{B \in \mathcal{A}: \ x \in B} B \qquad \text{mit } x \in X$$

und zeigen Sie:

- Ist $M_x \cap M_y \neq \emptyset$ für $x, y \in X$, so gilt bereits $M_x = M_y$.
- Für alle $A \in \mathcal{A}$ gilt $A = \bigcup_{x \in A} M_x$.