UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher Stefan Jung

Übungen zur Vorlesung Analysis III

Wintersemester 2016/2017

Blatt 7

Abgabe: Donnerstag, 15.12.2016, 12:00 Uhr in den Briefkästen im Untergeschoss von Gebäude E2 5

Aufgabe 1 (10 Punkte). Seien X_1, X_2 zwei nichtleere Mengen und seien $\mathfrak{F}_1 \subseteq \wp(X_1)$, $\mathfrak{F}_2 \subseteq \wp(X_2)$ mit $X_1 \in \mathfrak{F}_1, X_2 \in \mathfrak{F}_2$ gegeben. Zeigen Sie: Sind $\mathfrak{M}_1 = \sigma(\mathfrak{F}_1)$ und $\mathfrak{M}_2 = \sigma(\mathfrak{F}_2)$ die von $\mathfrak{F}_1, \mathfrak{F}_2$ erzeugten σ -Algebren, so wird die Produkt- σ -Algebra $\mathfrak{M}_1 \otimes \mathfrak{M}_2$ erzeugt von

$$\{A_1 \times A_2 | A_1 \in \mathfrak{F}_1, A_2 \in \mathfrak{F}_2\}.$$

Aufgabe 2 (10 Punkte). Sei (X, \mathfrak{A}, μ) ein Maßraum und sei (Y, \mathfrak{M}) ein messbarer Raum. Sei weiter $T: X \to Y$ eine messbare Abbildung und $T(\mu)$ das Bildmaß von μ auf \mathfrak{M} . Zeigen Sie, dass für jede messbare Funktion $f: Y \to \mathbb{C}$ die folgenden beiden Aussagen äquivalent sind:

- (i) $f: Y \to \mathbb{C}$ ist integrierbar bezüglich $T(\mu)$.
- (ii) $f \circ T : X \to \mathbb{C}$ ist integrierbar bezüglich μ .

Zeigen Sie weiter, dass in diesem Fall gilt:

$$\int_{Y} f(y)dT(\mu)(y) = \int_{X} f(T(x))d\mu(x)$$

Aufgabe 3 (10 Punkte). Sei $\mathbb{S}_{k-1} := \{u \in \mathbb{R}^k | ||u|| = 1\}$ die Einheitssphäre in \mathbb{R}^k bezüglich der euklidischen Norm $||\cdot||$.

(a) Zeigen Sie, dass jeder Vektor $x \in \mathbb{R}^k \setminus \{0\}$ eine eindeutige Darstellung der Form x = ru mit r > 0 und $u \in \mathbb{S}_{k-1}$ hat.

Wir können daher $\mathbb{R}^k \setminus \{0\}$ mit dem kartesischen Produkt $(0, \infty) \times \mathbb{S}_{k-1}$ identifizieren.

(b) Es bezeichne λ_k das auf $\mathfrak{B}(\mathbb{R}^k)$ eingeschränkte Lebesgue-Maß. Zeigen Sie, dass durch

$$\sigma_{k-1}(A) := k \cdot \lambda_k(\widetilde{A})$$
 mit $\widetilde{A} := \{ ru | r \in (0,1), u \in A \}$

ein endliches Maß $\sigma_{k-1}: \mathfrak{B}(\mathbb{S}_{k-1}) \to [0,\infty)$ definiert wird.

bitte wenden

(c) Beweisen Sie: Für jede Borel-messbare Funktion $f: \mathbb{R}^k \to [0, \infty)$ gilt

$$\int_{\mathbb{R}^k} f(x) d\lambda_k(x) = \int_{(0,\infty)} \left(\int_{\mathbb{S}_{k-1}} f(ru) d\sigma_{k-1}(u) \right) r^{k-1} d\lambda_1(r).$$

Hinweis: Verwenden Sie Aufgabe 2 von diesem Übungsblatt.

Aufgabe 4 (10 Punkte). Auf $Q := (0,1) \times (0,1) \subset \mathbb{R}^2$ sei die folgende Funktion gegeben:

$$f:\ Q \to \mathbb{R},\ (x,y) \mapsto \frac{1}{1-xy}$$

(a) Zeigen Sie, dass f auf Q Lebesgue-integrierbar ist und berechnen Sie den Wert des Integrals

$$I = \int_{\mathcal{Q}} f(x, y) d\lambda_2(x, y)$$

mit Hilfe der Substitution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

(b) Zeigen Sie unter Verwendung von Aufgabenteil (a), dass

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Hinweis: Betrachten Sie eine geeignete Reihenentwicklung von f.