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0 Motivation

Analysis is the study of functions f: C — C (or more generally f: A — B). We
can ask ourselves for transformations of functions, i.e., mappings

T:{f: A—>B}—={f: A— B}.
If we do this, several questions emerge:

(i) Which structure do the spaces {f: A — B} have? For example
C(]0,1]) = {f: [0,1] — C continuous}

is a vector space via f+g and A\f (pointwise) for A € C, f, g € C(]0, 1]), furthermore
it is normed via |||, and it is complete.

We need to understand topological concepts on vector spaces like the convergence
of sequences of functions and generalisations to {f: A — B}, which leads to the
concepts of Banach spaces and Hilbert spaces.

(ii) In the setting T: X — Y with vector spaces X and Y, we are particularly
interested in linear functions, a concept we know from linear algebra, e. g.

(1)) = [ ks trp(e) i

for a suitable k: Z x Z — C. In this sense, we will study “matrices of infinite size”
(namely if X and Y are infinite dimensional). What are “eigenvalues”, what is
“diagonalizing”, ... 7 If dim X,dimY < oo, then T being linear implies T being
continuous, hence linear algebra. If dim X,dimY = oo, this implication doesn’t
hold. So, in a way, functional analysis is linear algebra and analysis coming together.
The study of those maps will lead to the concept of operators on Hilbert— and
Banach spaces.

(iii) For matrices (in linear algebra) we have AB # BA. This phenomenon
of “non-commutativity” is important for operators on Hilbert spaces and also in
quantum mechanics. If we want to study the space

{T: X — Y linear and continuous}

we will have to deal with non-commutativity. And we will meet algebraic structures,
since {T: X — Y} is again a vector space and even an algebra (for instance if
X =Y via 8T := SoT). We will deal with operator algebraic structures like
Banach algebras, C*-algebras and von Neumann algebras.



History of Functional Analysis Some of the main protagonists of functional anal-
ysis are:

Fredholm (~ 1900) was interested in integral operators,

Hilbert (~ 1910) was interested in spectral theory of general continuous
operators,

Riesz (~ 1910/1920) was interested in linear maps on normed spaces,
Banach (~ 1920/1930) was the “founder of modern functional analysis”,

von Neumann (~ 1930/1940) worked on the mathematical foundation of
quantum mechanics, introduced von Neumann algebras,

Gelfand (~ 1940) introduced in C*-algebras.

Literature suggestions Common literature on the topic are:

John Conway, A course in Functional analysis, Springer, 1990,

Friedrich Hirzebruch and Winfried Scharlau, Einfihrung in die Funktional-
analysis, Spektrum, 1996,

Reinhold Meise und Dietmar Vogt, Einfiihrung in die Funktionalanalysis,
vieweg, 1992,

Gert Pedersen, Analysis Now, Springer, 1989.



1 Topological vector spaces

There is a hierarchy of information regarding “place” and “convergence”:

e topology — shape of boundaries, minimal requirement for continuity
e metric — distances
e normed — scale for distances from an “origin”
Definition 1.1 (Topological space): Let X be a set. A subset T C P(X) is a
topology on X, if
(i) 9,X €%,
(i) U,V eZT=UNV g,
(i) MCT=Upey VeET
hold. Elements U € ¥ are called open, A C X is called closed, if A°:= X\ Ais
open.

A topology ¥ is called Hausdorff, if Va,y € X,x # y there are U,V € ¥ such
that r e Ujye VandUNV =g. If Y C X, then

?::ﬂA

A closed
YCA

is the closure of Y.
N C X is a neighbourhood of x € X, if there is an open set U C X such that
xreUCN.

Remark 1.2: (i) If (X,d) is a metric space (i. e., there exists d: X x X — [0, 00)
for which d(z,y) = d(y,x), d(z,2z) < d(z,y) + d(y,z) and d(z,y) =0 & z =y
hold), then the sets M C X with

Va€e M3e>0:B(a,e) ={xe X |da,x)<etCM

form a Hausdorff topology.
(ii) T = {@, X} is the trivial topology. The trivial topology is not Hausdorff.
(iii) V C X is open if and only if V is a neighbourhood for all z € V.

Proof: “=" is trivial. For “«<”: Let z € V and choose x € U, C V open, then
V =Uzey Us- [ |

(iv) Let Y € X. Then it holds: 2z € Y if and only if NNY # & for all
neighbourhoods N of z.



1 Topological vector spaces

Proof: We have the following equivalences:

z€Y o ze Aforall ADY closed
< IfUisopen, UNY =g, then z ¢ U
< ForallopensetsU :2eU=UNY #0 |

In topological spaces we may define continuity, matching our notion of continuity
in metric spaces.

Definition 1.3 (Continuity): A map f: X — Y between topological spaces is called
continuous in z € X, if for all neighbourhoods N C Y of f(z): f~1(N)C X is a
neighbourhood of x. f is called continuous, if it is continuous in all x € X.

Proposition 1.4: (i) Let X,Y be topological spaces. f: X — Y is continuous if
and only if f~Y(U) is open for every U C'Y open.
(ii) Let X,Y be metric spaces. f: X — Y is continuous if and only if Vo € X
Ve>036>0: f(B(z,9)) C B(f(x),e).

Proof: (i) “<”: Let z € X and N CY be a neighbourhood of f(x). Without
loss of generality let N be open. Then f~!(N) is open and x € f~1(N).

“=" Let U CY be open and x € f~1(U), then U is a neighbourhood of f(z).
Thus f~1(U) is a neighbourhood of z and by f71(U) is open.

(i) “=": Let z € X and ¢ > 0. Then f~(B(f(x),¢)) is a neighbourhood of .
Hence, there is a § > 0 such that B(z,d) C f~*(B(f(x),¢)).

“c”. If N C Y is a neighbourhood of f(z), then there is an ¢ > 0 with
B(f(z),e) € N. Thus, there is a § > 0 such that we have

B(x,8) C fH(B(f(x),)) S fHN),
therefore f~1(N) is a neighbourhood of . [ |

In metric spaces we may also express continuity using sequences. In topological
spaces, we need nets.

Definition 1.5: A set A is ordered, if there is a relation “<” such that
(i) A< A
(ii) If A < p, u < A, then A = p,
(iii) ¥ A < pand p < v, then A <w.
A is a filtration, if in addition VA, p e A: dv e A: A <v,u <.

Remark 1.6: In general two arbitrary elements of a filtration are not comparable.

Definition 1.7: Let X be a topological space, (zx)xea € X a family and A a
filtration. Then (z))xca is called a net. The net converges to x € X, if for every
neighbourhood N of x there is a A\g such that x) € N for all A > .



Example 1.8: (i) (A, <) = (N, <) gives the known concept of sequences.

(ii) Let A be the set of all partitions a = tg < t; < -+ < tp—1 < t, = b of the
interval [a,b] C R and let f: [a,b] — R be continuous. Then A is a filtration via
A > p & X is a partition finer than p. If we define

Sx 1= Z ()t —tiz1),

tiEX
then (s))aea forms a net converging to f; F)de

Remark 1.9: (i) It is possible, that a net converges to two points. For instance
in T = {@, X} every net converges to every point.

(ii) Let X be a topological space and Y C X. Then Y is the set of all limit
points of nets in Y.

Proof: “27: Let (zx)xea C Y be a net with ) — z and let N be a neighbourhood
of z. Thus, there is a A\g € A such that z) € N for all A > A\g. Then, NNY # &
for all neighbourhoods N of z, so z € Y by

“C” Let z € Y. Consider the set il of all nelghbourhoods of z. This is a
filtration via U > U’ :< U C U’. For any neighbourhood U € 4 choose z, € UNY
(UNY # @ via ), then we have x,, — z. [

(iii) A C X is closed if and only if (z) — z, ) € A= 2 € A). This is a direct
consequence of (ii).

(iv) Let f: X — Y be a mapping between topological spaces. Then f is
continuous if and only if for all nets (z)) C X with xx — = we have f(x)) — f(x).

Proof: See exercise 1 on sheet 1. [ |

Definition 1.10: Let (X, d) be a metric space. A sequence (z,,)nen is called Cauchy
sequence, if Ve >03IN e N: Vn,m > N :d(xy, ) < €.
X is called complete, if all Cauchy sequences in X converge.

Example 1.11: (i) Consider X = (0,1) with the usual metric d(z,y) := |z — y|.
This space is not complete.

(ii) Consider X = (0,1) with a metric mapping X in a bijective way to R, then
(X, d) is complete.

In the sequel, we need to understand how to complete a space and how to extend
functions to these completions.

Theorem 1.12: Let (X,d) be a metric space. Then there exists a unique (up to
isometry) complete metric space (X', dA) with isometric embedding i: X — X (i.e.,
d(i(x),i(y)) = d(z,y)) and i(X) = X.

A map p: X =Y between metric spaces with dy (¢(x), p(y)) < Cdx(x,y) for
all xz,y € X and fized constant C > 0 may be extended in a unique way to a
continuous map Q: X =Y with poi = in case Y is complete.




1 Topological vector spaces

Proof: (i) We call two sequences (z,)nen, (2] )nen equivalent if and only if

d(zy,x]) — 0, in this case we write (2, )nen ~ (2}, )nen. We then set

~

X = {[(zn)nen] | (Zn)nen is a Cauchy sequence in X},

A

d([(zn)], [(yn)]) := limp 00 d(@n, yn) and
i X — X
x— [(x,z,2,...)]

Check, that “~” is indeed an equivalence relation on the set of Cauchy sequences
with elements in X and that the limit (d(z,, yn))nen exists and that d is a metric.

Proof (that the limit of (d(@y, Yn)nen exists): Via the triangular inequality we
have

d(l‘n, yn) - d(xm; ym) < d(l‘n, xm) + d(mma ym) + d(ym7 yn) - d(l‘m, ym)
< 2e

and similarly —2¢ < d(zp, yn) — d(Tm, Ym ), 50 (d(Tn, Yn))nen is a Cauchy sequence
in R, hence the limit exists. ]

The map i: X — X is isometric, since

d(i(2),i(y) = lim d(z,y) = d(z,y)

and we have i(X) = X, since for [(z,)] € X we have i(2,) — [(Zm)men], because
for e > 0: .
d(i(zn), [(2m)]) = lm (2,,2x) <€

k—oco

for n > N.

(ii) X is complete: We construct a suitable diagonal sequence. Let (a,)new be
Cauchy in X, hence o, = [(2})ren]. Since “If (an)nen is Cauchy and (b, )nen is a
subsequence of (ay,), then d(a,, b,) — 07, we may assume without loss of generality
that d(a}, x7,,) < 1. Also, we may assume

A 1
d(OLn,O[n_H) < W

Choose yn = xj(,,) for k(n) = n and d(yn, yn+1) < >

Proof (that there is such (y,,)): Set y; := z}. If y,, has been constructed, then

from 1
d(an, apt1) < DrESE

we know, that there exists an | > k(n) + 1 such that d(z},z]'") < Farr- Put
Ynt1 = 2! Then

1 1 1

) < 2k(n)+1 + <sn u

d(ynayn+1) < d(xZ(n)vx?) + d(x?,:z:;”‘l on+1 on '’

10



Then (y,) is Cauchy in X, hence [(yn)nen] € X. And a,, — [(yn)] for m — oo.

Proof (that o, — (yn)): Let € > 0. Let N be such that 5%+ < ¢, let m > N.
Then d(am, [(yn)]) < &, because for [ > m

d(mlm’ yl) < d(mlm’ wzzm)) + d(ymv yl)
1 1 2

< 2min{l,k(m)} + gm—1 < 9N-1 <& u

(iii) We set
¢([(zn)]) := lim_@(zn),

n— oo

this is welldefined, since (¢(xy))nen is @ Cauchy sequence in Y (because we have

dY(@(xn)v @(xm)) < Cdx (xna xm)

and (z,)nen is a Cauchy sequence). @ is continuous and unique. For the continuity:

If we have [(2F)pew — [(Zn)nen] for k — oo,

d(@([(z3)new)), ¢([(zn)nen]))

< d(@([(z)new])s p(2)) + d(p(zh), o(2n)) + d((2n), 2([(Tn)nen]))
< 3e

for k,n large. For the uniqueness: Let ¢’ be another continuous map such that
¢ o1 =, then

¢([(zn)nen]) < o(z) = @' ([(@h, 2x Ths - - ]) = @' ([(20)]),

s0 ¢ =¢.

As a special case of the construction, we may prove that X and X are isomorphic,
if X CY with Y complete (Exercise sheet 1).

For the uniqueness of X: Let (Y,dy) be another complete metric space and
i: X — Y be an isometric embedding, i(X) = Y. Then, by (b), we have :: X — Y
and

Y =i(X)=2i(X) = X. ]

Example 1.13: (i) Let X = Q, then Q =R.
(i) Let X = C([0,1]) := {f: [0,1] — C continuous},

1
[flloc == sup [f(z)| and ||f||1=:/0 |f ()] dzx

z€]0,1]

and denote doo(f, 9) = [If = glleo, d1(f,9) := [If — gll1. Then (C([0,1]), doc) is
complete, but (C([0,1]),d;) isn’t. We have

—

(€([0,1]),d1) = (L*([0,1]), A).

11



1 Topological vector spaces

In the following, with K we denote either the real numbers R or the complex
numbers C.

Definition 1.14: Let X be a K-vector space together with a topology. X is a
topological vector space, if

+: X xX —X pwKxX —X
(r,y) — x+vy (N z)— Az
are continuous.

Remark 1.15: (i) The continuity of the addition means: If zx — z, y, — v,
then x) +y, — = +y with a filtration A x M with
Vo) =\ p) e (N 2 AN > p).

(i) f X is a topological vector space, Y C X a subspace, then Y CXisalsoa
vector space (If z,y € Y, then 3x\ — x,y, — y, such that xx +y, — = +y, thus
r+yeY).

Theorem 1.16: Let X,Y be topological vector spaces, T: X — Y a linear map. The
following are equivalent:
(i) T is continuous (in all points),
(ii) T is continuous in some point,
(iif) T is continuous in 0.
Proof: “(i) = (iii)” and “(iii) = (ii)” are trivial.
“(ii) = (i)”: Let T be continuous in z € X. Let x\ — z, then z) + (z — z) — 2,
thus Tey =T(xx+2z—x) —T(z —x) = T(x). [ ]

Definition 1.17: Let X be a K-vector space. A map ||-||: X — R is called a norm,
if

(i) fl=ll =0,

(i) [IAz]| = [Alll=]],

(i) [l +yll < [lzll + [lyll,

(iv) ||zl =0=2=0

hold for all A € K, z,y € X. Without (iv), ||-|| is called a seminorm.

Remark 1.18: Every normed vector space is a topological vector space via the
topology induced by the metric d(z,y) := ||z — y||
Let x,, - = and y,, — vy, then

d@n +yn, 2 +y) = (&0 +yn) = (@ + Yl < ll2n =zl + llyn —yll = 0,

so the addition is continuous. The induced metric is translation invariant (i.e.,
d(x +y,y+ z) = d(x,y)) and the norm is continuous (seen as a map |[|-||: X — R).

12



Example 1.19: (i) Let X =R" or X = C” and =z = (21,...,2,) € X. Then

n n 1
2
Izl ==Y Jwil  llzfa = ( > WQ) v zllo = max [a].
2 ‘ 1=1,...,n
i=1 =1

declare norms on X. ||-||2 is called the Euclidean norm and matches our geometric
idea of distance.

(ii) Let K be a compact topological space and
X :=C(K) :={f: K — C continuous}.

Then
[ flloo == sup|f ()|
zeK

declares a norm on X.

(iii) Let g be a measure on R and 1 < p < co. Then
LP(p) = LP(R, p) :={f: R = C | || fllp < o0}
where .
11 += ([ 1@ dute) )’
R
is a normed vector space. For p = oo, set
L) ={f:R—=C| Ic>0:{t||f(t)] > c} is a zero set}

and
1flloo :=1inf{c | {t | |f(¢)| > ¢} is a zero set}.

Definition 1.20: Two norms ||-||; and ||-||2 are called equivalent, if there are con-
stants C1, Cy > 0 such that

Crllzlly < llzfl2 < Gl
In this case, (X, ||-]l1) and (X, ||-||2) are topologically isomorphic, since
id: (X, [[[1) = (X, []2)

is bijective and continuous in both directions. The norms generate the same
topologies, since x,, — x in (X, ||-||1) implies z,, — = in (X, ]]|2) via

|xn — z||2 < Ca|zy,, — |1 — 0.

One can show, that all the norms in (i) are equivalent, in fact all
norms on R™ (or C™ respectively) are equivalent. Hence, there is only one normed
n-dimensional R-vector space (or C-vector space respectively). This is not true in

13



1 Topological vector spaces

the infinite dimensional case. Consider for instance the spaces (C([0,1]), ||-||s) and
(€([0,1]), [I-[ln) as in . We have

1 1
= d 00 dt < 00
[1f1x /Olf(t)| tS/O [[flloo dt < [|.f1]

but there is no constant C' > 0 such that ||f|lcc < C||f|l1: Take a function f, as
shown in

1+ fn

31
—

Function f,: [0,1] = R — C

Then || fn]1 = i and || fullco = 1. But suppose it exists C' > 0, such that

1= anHoo < Can”la then
C

1= nlloo < —
Ifulloo <

for all n € IN, which is a contradiction.

Theorem 1.21: Let X,Y be normed spaces, T: X — Y linear. Then the following
are equivalent:

(i) T is continuous,
(ii) 3C>0Vzr e X : ||Tz| < C|z|.

Proof: “(ii) = (i)”: It holds
[Tz = Tx|| = |T(2n = 2)|| < Cllzy — || = 0.

“(i) = (ii)”: Since T is continuous in 0, for ¢ = 1 there is a § > 0 such that
[Tyl <1 when |y|| <é. Put C :=} > 0, then it holds for any z € X:

[l x

o
= B (52 || < 120 — .
17l =5 H (5||x|)H— 5 = Clel .

Definition 1.22: Let T: X — Y be a linear map between normed spaces. Put

IT|| :==inf{C >0 ||Tx| < C|z||Vz € X} € [0, 0],

14



the operator norm. T is bounded, if | T|| < co. Write
B(X,Y):={T: X — Y linear, bounded},
we abbreviate B(X) := B(X, X) and X' := B(X, C).
We conclude that tells us: “continious” is the same as “bounded”.
Proposition 1.23: Let X, Y be normed vector spaces and T € B(X,Y). Then:

() [ Tzl| < [Tl for all z € X,

(i) |7 = sup{[|Tz[| | ||| = 1},

(iil) [T} = sup{[[ T | [l«] <1},
)

IT) = sup{ 1Tzl | @ # 0}.

Proof: (i) Choose C,, | ||T||, then we have ||Tz| < C,||z|| for all z € X.
(ii) Let o :=sup{||Tz| | [|z]| = 1} < ||T||, but we also have

Y
1Tyl = ol HT (| )H < lylla,
yll
so ||T]] < «.

(iii) and (iv) work similarly. [ |

(iv

Definition 1.24: A Banach space is a normed vector space which is complete (with
respect to the metric induced by the norm).

Example 1.25: (i) Let K be compact, then (C(K), | [|«) as in is
complete.

(ii) LP(p) is a Banach space for 1 < p < 0o as in

(iii) Every finitedimensional normed vector space is complete (check that the
normed vector spaces (R",||-||2) and (C",|-||2) are complete and then use the
equivalence of norms mentioned in the remark following ).

Theorem 1.26: Let X,Y be normed vector spaces. Then B(X,Y) is a normed
vector space (i.e., ||-|| from is indeed a norm). If Y is a Banach
space, then B(X,Y) is even a Banach space.

Proof: (i) First, we want to show that ||-|| is indeed a norm. Let S,T € B(X,Y),
then
105 + Tl < ||Sz]| + T[] < [[S]| + |1

for all x € X with ||z|| = 1, so we have the triangular inequality for ||-||. Furthermore,
we have

[(AT)z|| = [AIT=l| , [T||=0<T=0.

15



1 Topological vector spaces

(ii) Let now Y be complete and let (7},)nen be a Cauchy sequence in B(X,Y).
Then (T;,z)nen is a Cauchy sequence for all x € X, so there is a limit lim,,—, oo T,z €
Y.Put S: X = Y,Sz :=lim,_ o Trx. S is linear, because

S(Ax + py) «— To(Ax + py) = XTpx + pThy — ASx + pSy,

and T,, — S (with respect to the operator norm on B(X,Y)!): For a given € > 0
choose N € IN such that || T}, —Tp, || < eVn,m > N. Now let z € X so that ||z|| =1
and choose m(x) > N, such that |[(S — T}, ) ()| < €, then

1S = To)al| < [[(S = Ton(@)) 2l + | Tone) — Tullllzll <&,

so ||S — T,|| < 2e. Eventually, S is continuous as a sum S = Tx + (S — T) for
some N with ||S —Tn|| < € (since S — T is bounded and thus continuous and T
is continuous by precondition). ]

Corollary 1.27: X’ = B(X, C) is a Banach space.

Proposition 1.28: If X is a normed vector space, then the completion X is a Banach
space.

If T is linear and continuous and Y is a Banach space, then there is a unique
linear continuous extension

T: X —>Y
such that ||T| = |||
Proof: X is a vector space via A[(#n)nen] + 1[(n)nen] := [(AMn + fi¥n )nen] and
it has a norm via
1[(zn)nen]|| == nlingo||m7z||
Since
CZ([(xn)nelN]) [(Yn)nen]) = nh—{Iéo d(Tp, yn) = nh_{I;O”'rn = Ynll = l[(zn + yn)nenl|
and X is complete with respect to d by , X is a Banach space. Since
d(Tx,Ty) = [Tz —Ty|| < ||T||d(z,y), T exists by and one can check,
that T is linear and ||T'|| = ||T|| holds true. [ |

Proposition 1.29: Let T € B(X,Y) and S € B(Y,Z) for normed vector spaces
XY, Z, then ||ST|| < [IS|IT1-

Proof: We have
[(ST)z|| = [|S(T2)|| < [ SINT=|| < [ISINT[Il=]],

taking the supremum proves the claim. |

16



Lemma 1.30: In a Banach space, every absolute convergent series converges.

Proof: Let s, := ) ;_, 2 € X and assume > ||| < oo. Then (s,)nen is a
Cauchy sequence, since for n > m

n n
Isw=smll = | 32 sl < D0 Nl <,

k=m+1 k=m+1

S0 (Sn)nen converges. [ |

Definition 1.31: Let E be a normed vector space and let F' C E be a linear subspace.
We put x ~y < x —y € F, then

E/F :={i|x € E}

is called the quotient space, where & is the equivalence class with respect to ~.
E/F furthermore has a (semi) norm via

&) = inf{{lyll [ = ~ y} = inf{{lz +2[| | z € F'}.
Theorem 1.32: Let E be a normed vector space, F C E a linear subspace.

(i) E/F is a vector space via & + 9 := (z +y), A& := (Azx),
(ii) ||Ill Zs a semi norm on E/F and it is a norm if and only if F is closed.

(iii) If F is closed, then the canonical quotient map

E— E/F
Tr— T

is continuous, linear, has norm less or equal 1 and maps open sets to open
sets.

(iv) If F is closed and E is a banach space, then E/F is a Banach space.
Proof: (i) The operations are well-defined, because
(+F)+(y+F)=(x+y) +F,

for the scalar multiplication the prove works similarly.

(ii) Let 21,22 € F such that ||| + ¢ = ||z + 21| and ||g]| + € = ||y + 22||. Then

&+ 9l < (@ +y) + 21+ 22 < llz + 21l + [y + 21 [] < (2] + 91| + 2,

likewise ||\Z|| = |All|Z]], so ||| is a semi norm. B
Moreover ||Z]| = 0 < 3 (2n)nen € F @ |2+ 25| = 0 & x € F'. Now assume that
F' is closed, then ||| = 0 implies € F = F, hence & = 0. Conversely, assume

that ||| is a norm. Then x € F implies, that ||z = 0, therefore & = 0, so x € F.
Thus FF C F C F, hence F is closed.

17



1 Topological vector spaces

(iii) Since ||Z|| < ||z||, the quotient map = — & is continuous with norm less or
equal to 1. It remains to be shown, that z — & indeed maps open sets to open sets:
Let V C F be open and let & € V. We need to show, that there is ¢ > 0, such
that B(i,e) C V. Without loss of generality, assume x € V (otherwise: z +w € V.
with w € F); then there is € > 0 such that B(z,e) C V, because V is open. Let
z € B(&,¢e). Then ||(z — z)'|| < €, hence we find w € F, such that ||z — 2+ w]|| < e.
But then z +w € B(z,e) C V and therefore 2 = (2 +w) € V.

(iv) Tt remains to be shown, that E/F is complete. Let (&, )nenw € E/F be a
Cauchy sequence. Without loss of generality, ||@, — @, 1] < 27"+ (otherwise,
pass to a subsequence). Hence, there is an a,, € E, such that |a,| < 27" and
Gp = Tpy1 — Tyn. Then s, 1= Zzzl ap converges absolutely, thus it converges in F
by .

Put 2,41 1= @p + Yy @ with 21 := z1. Then %, = &, and (2, )nen converges
to some z € E, so Z, — 2 due to the continuity of the quotient map. |

Definition 1.33: Let X be a K-vector space and let P be a family of seminorms
on X. X is a locally convex vector space, if it is a topological vector space whose
topology is generated by P: U C X is open if and only if

VeeU3IneN3py,...,pp3e1,...,60,>0: By (z,e1)N---N By, (x,6,) CU

holds. Here By, (z,¢) :={y € X | pi(z — y) < ¢} mean the e-balls with respect to
p;. Those are in particular open.

Remark 1.34: (i) If X is a normed vector space, then X is a locally convex
vector space and thus even a topological vector space.
(i) If (xa)aea C X is a net, then (z)) — x if and only if p(z) —x) - 0Vp € P.
(iii) All seminorms p € P are continuous, i.e., if xx — =z, then p(z\) — p(z).
(iv) We may add arbitrary continuous seminorms without changing the topology.

In particular, there is a maximal set of seminorms, namely the set of the continuous
seminorms on X, defining a given locally convex topology.

(v) X is Hausdorff if and only if Vo £A03p € P: p(x) > 0.
Proof (of (v)): “=": The net x) :=  converges to x. Suppose p(z) =0Vp € P,
then ) — 0 by (ii). Because we have z) — z and x) — 0, by Sheet 1, Exercise 2,
x = 0 must hold.

“«<": Assume z) — x and x) — y with z # y. By assumption we may find a

p € P such that p(z—y) > 0. But then p(z)—y) — 0 and p(zx—y) — p(z—y) > 0,
which is a contradiction to the continuity of p. |

Example 1.35: (i) Let

X =C*([0,1]) = {f: [0,1] — C infinitely many times differentiable}
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and pr(f) := ||f*||eo, where f¥) is the k-th derivative. In this locally convex

vector space, we have
fo = fo S = (0

for all k& (uniform convergence of all derivatives).
(if) Let 2 C € be open, (fn)nenw € C(2). We say, that the sequence (fy)
converges to f: Q — C, if for all K C Q compact the following statement holds:
Ve>03INeNVn>N:|f,— fllx <e.

Here || f||x = sup,cg|f(x)]. Since (C(K),||-||x) is complete, we obtain that f|x
is continuous, in fact f is even continuous on the whole of 2. We may prove: If f,
is holomorphic for all n, then f is holomorphic, too. Hence, this convergence is a
useful one and it comes from seminorms (||-||x)xca-

One can characterise all relatively compact subsets of O(f2) (in analogy to the
theorem of Arzela-Ascoli) via the theorem of Montel.

Definition 1.36: Let X be a K-vector space and M C X a subset.
(i) M is convez if and only if Yo,y € MVt € [0,1]:tz+ (1 —t)y € M.
(ii) M is called circled if and only if Vo € MVA € K, |A| <1: Az € M.
(iii) M is called absorbant if and only if Vo € X3IA >0: Az € M.

Example 1.37 (in R2): We can illustrate the types of sets defined in
in R? with the following example sets:

’

(a) (b) () (d)

Examples for a convex set (a), a non-convex set (b), a circled convex
set (¢) and a circled, but non-convex set (d).

Remark 1.38: In a locally convex vector space, (\;_; By, (0,¢x) is convex, circled
and absorbing. Such sets correspond to our idea of a ball arround zero.

Proposition 1.39: Let X be a K-vector space and let M C X be a subset.

(i) If M is convex and absorbing, then the “Minkowski functional”
pu(x) :=inf{A > 0|z € A\M}

is a sublinear functional, i.e., it holds (a)Va > 0Vz € X : p(ax) = ap(z)
and (b) p(z +y) < p(z) +p(y) Va,y € X.
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1 Topological vector spaces

(ii) If in addition M is circled, then pys is also a seminorm. Since
{z|pm(z) <1} €M C{x | pm(z) < 1},

the set M is “almost” a unit ball with respect to pys.

Conversely: If p is a seminorm on X, we put B, :={z € X | p(z) < 1}
and Dy, := {z € X | p(z) < 1}. Then B, and D, are convez, circled and
absorbing and pg, = pp, = p-

Proof: (i) (a) Let x € M and o > 0 with o # 0. Then
py(ax) =inf{\ | ax € AM} = inf{a) | ax € aAM} = apr(x).

(b) Let ¢ > 0 and z,y € M. Then we have (pp(z) +¢) 'z € M aswell as
(pam(y) +¢)~ty € M. Because M is convex, their convex combination

pu(w) +¢ ( x) pu(y) +¢ < 1 y)
pm(z) +par(y) + 2 \pu(x) +¢ (@) + par(y) + 26 \pu(y) +¢° )

is an element of M, so

1
v (w) +par(y) + 2

(x+vy) € M,

hence pyr(x 4+ y) < pa(x) + par(y) + 2e. € — 0 proves the claim.
(ii) Let v € M and a € K, # 0. Then

pu(ax) = inf{|a|A | az € |a|]AM} = |a|pm (). ]

Theorem 1.40 (Characterisation of locally convex vector spaces): Let X be a topo-
logical IK vector space. X is locally convex if and only if every neighbourhood of
zero contains an open, convex, circled, absorbant set.

Proof: “=7": This is .
“<=”: Set P:={py | M € ¥ convex, circled, absorbant, M C V,V € 1((0)}.
Then the given topology ¥ coincides with o, the one induced by P.

Proof (That the induced topology coincides with the given one): Let V' be open
with resepect to . We have to show, that V then is open with respect to o.
Let z € V. Then V' := V — z is a neighbourhood of zero with respect to .
By assumption, we find an open convex, circled, absorbant set M C V’. Then
0€{z|pu(z) <1} C M C V' thus V' is also a neighbourhood of zero with
respect to 0. Hence V is a neighbourhood of z with respect to o, then we use

The other inclusion is technical and left as exercise for the reader. [ |
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Remark 1.41: (i) The crucial point in is: “There exists a convex
set”. In fact: In any topological vector space, any neighbourhood of zero contains
an open, circled and absorbing set (If U € 4(0), then =1 (U) is a neighbourhood
of (0,0), where p: K x X — X is the multiplication map, i.e., 3¢ > 03V € 4(0)
open such that B(0,e) x V C p=1(U), then put W := {X\v | [A| <e,v € V} CU).

(ii) Ome can characterise metric vector spaces using seminorms (see Sheet 3,
Exercise 1).

(iii) If p1,...,p, are seminorms on X, then also > ., p; and max{p1,...,pn}
are seminorms and

P’::{E:pi:pieP}7 P”::{max{pl,...,pn}:piep}
i1

define the same topology.
But P’, P” are ordered (p(z) < ¢(z)Vz) and filtrations, too (If p,q € P’, then
p+q=p,qandif p,g € P”, then max{p, q} > p,q).

Theorem 1.42: Let (X, Py), (Xo, Py) be locally convex spaces, T: X1 — X5 a
linear map. Then T is continuous if and only if

Vge P,3pe PL3C >0:¢q(Tz) < Cp(x)Vz e X.

Proof: “<7: Let ) — x and let ¢ € P,. Then ¢(Txy — Tx) < Cp(zx —x) — 0
(by ) for some p € Py.

“=": Let ¢ € Po. Then V := {y € Xo | q(y) < 1} C X5 is open. Because
T is continuous, we know that 7'V C X, is open, i.e., 3p1,...,p, € P, and
Je1,...,en > 0, such that

T({x | pi(x) <e;, 1 <i<n})CV.

Now choose ¢ < min{ey,...,en}, P > p1,-..,Pn (Without loss of generality, P is a
filtration) and put C :=e~!. Then we have: If p(z) < ¢, then q(Tx) < 1, thus

000 (5)) - (1 o)) <0

In case p(z) = 0 we have ¢(Tx) < 1, but also p(Nz) =0V N € N, and we get
that N¢(Tz) = q(T(Nz)) < 1V N € NN, hence ¢(Tx) = 0 must hold. [ |
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2 Hahn-Banach Theorems

In order to understand spaces {f: C — C}, evaluation maps are very useful, e. g.

evy: {f:C—>C} —C
fr—f(z).

More general, we want to understand continuous functionals f: X — K for some
normed vector space X.

Definition 2.1: Let FE be a K vector space. A sublinear functional on E is a map
p: E — R such that
(i) p(Az) = Ap(x)VA > 0Vz € E,
(ii) p(z +y) < p(z) +py)Va,y € E.
Example 2.2: (i) If p is a seminorm on a I vector space E, then p is a sublinear
functional.

(ii) If p: E — R is a linear function, then p is a sublinear functional as well.

In this chapter, we are interested in two kinds of questions:
(1) Extensions: Given a linear function f: F' — R with f(x) < p(z) forallx € F
for a subspace F' C E. Can f be extended to a linear function f: E — R? Does

f(x) < p(z) still hold?
(2) Separations: Is there a continuous linear function f: X — R such that
fx)<lon M C X and f(xg) > 1 for a fixed zog ¢ M?

Theorem 2.3 (Hahn-Banach, root version): Let E be an R vector space, p: E — R
be a sublinear functional, FF C E a linear subspace and let f: F — R be linear with
f(z) <p(x)Vx € F. Then there is a linear extension f: E =R of f, such that
fl@) <p(x)Vz € E.

Proof: Let

M :={(G,g) | F C G C E linear subspace,
g: G — R linear, g|r = f,g(z) < p(x)Vx € G}

Then M # &, because (F, f) € M, and M is ordered via
(Gagl) < (G27g2) = Gl g G27g2|G1 = 9g1-
This order is reflexive (because (G, g) < (G,g)), it is antisymmetric (for (G, g),

(H,h) € M holds: if (G,g) < (H,h) < (G, g), then G = H and g = h), transitive
and inductive (if (Go, go)aca © M such that mutually two elements are comparable,
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2 Hahn-Banach Theorems

then G := U, cp Go With g(2) := ga(z) for v € G, C G is an upper bound). Via
the Lemma of Zorn, it exists a maximal (H,h) € M.
Assume H C E, hence we have z € E\ H. We define

h: (H,z) — R

such that (H,
h(z) + h(y) =

h) < ((H,z),h) € M. For the definition: Let x,y € H. Then
hx+y) <plx+y) <plx+z)+ply — 2), so we can put
m = sup{h(y) —ply —2)} < inf {p(z + 2) — h(x)} = M.

yeH rcH

Now choose a € [m, M] and put h(z + Az) := h(z) + Xa for € H, A € R. So, h
is well defined and linear, since H and {z} are linearly independent and we have

(H,h) < ((H,2),h). ~
It remains to be shown, that h(z) < p(z)Va € (H,z). Let A > 0, then

h(z 4+ Az) = h(z) + Aa GSSM h(z) + A (p (% + z) —h (;)) =plz+Xz). g

Let now A < 0, then

P(@+A2) = h(z) +Aa 2 h(z) + Am
< h(z)+ A (h (—§> —p (—% —z)) =p(z+ Az).

Example 2.4: On {y = {(an)nen | (an)nen bounded, a,, € R} there is a bounded
linear functional LIM: ¢*°(R) — R with

lim inf a,, < LIM((a,)) < limsup a,.

n—00 n— 00
For convergent sequences (a,)nen, we have that LIM((a,)) = lim,— o an. For
non-convergent sequences, it is this “Banach limit”.

Theorem 2.5 (Hahn-Banach, seminorm version): Let E be a K vector space, p a
seminorm on E, F C E a linear subspace, f: F — K a linear functional and
|f(z)] < p(x)Vx € F. Then there is a linear evtension f: E — K such that
[f(@)] <p(z)Vz € E.

Proof: (i) Let K = R: Since f(x) < |f(w)[, we obtain f by with

f(z) < p(x), but —f(z) = f(-2) < p(=2) = p(z), so we have [f(z)| < p().
(ii) Let K = C: Consider u: F' — R with u(z) := Re(f(z)), then the inequality

lu(z)| < |f(x)| < p(z) holds. Via (i), we get an extension @: E — R, with
|i(z)| < p(z). Now put f(x) := a(z) — ia(iz). Then f(z) = f(z) for z € F,
because u(iz) = Re(f(iz)) = Re(if(x)) = —Im(f(x)), moreover we have

flat+y) =f@)+fly) . [O)=rf(2)
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for all z,y € E and A € R as well as fiz) = a(iz) — ia(—z) = if(z), thus
fz) =Af(x)VAeC. ~ }
Finally, for € E there is a u € C with |u| = 1 such that |f(z)| = pf(z), so

|f(@)] = nf(z) = f(uz) = Re(f(uz)) = a(uz) < p(px) = p(z). n

Corollary 2.6 ((ii) : Hahn-Banach, norm version): Let E be a normed K vector
space.

(i) For allx € E\ {0} there exists a continuous, linear f: E — K with f(x) =1,

(ii) If F C E is a linear subspace and f: F — K is continuous and linear, then
there is a continuous, linear extension f: E — K such that || f]| = || f]|-

Proof: (i) Define g: () — K on the onedimensional linear subspace (z) C E

via g(Az) := A and a seminorm p: E — K by p(y) := = ||y||. Then we have

ll=ll

l9(v)] = |A|Hf§” — p(na).

1 ensures the existence of a linear extension f: E — K such that
If(y)] < ply) = ”71”||y||, i.e., f is continuous.

(i) With p(z) := [|f[|[|z]|, we have |f(z)| < p(z). By ) we know, that

there exists a f: E — K such that |f(z)| < p(x) = || f||||z]|, i-e., f is continuous

and || f]| < [|£]l- N i
For z € F, we have f(z) = f(x), hence || f|| < ||f|| by . |

Theorem 2.7 (Hahn-Banach, locally convex version): Let E be a locally convex
vector space and I' C E a linear subspace, f: F' — K continuous and linear.
Then there is a continuous linear extension f: E — K.

Proof: Since f is continuous, we find a seminorm p on E and C > 0 such that
|f(z)] < Cp(x) by y . By we find an extension f, such
that | f(z)| < Cp(z), i.e., f is continuous by . [ |

Theorem 2.8 (Hahn-Banach separation theorem): Let E be a locally convex R vec-
tor space and let M C E be closed and convex such that 0 € M. Let xg ¢ M. Then
there is a linear, continuous function f: E — R with f(xg) > 1 and f(z) <1 for
allz € M.

Proof: Let V' be an open, convex circled, absorbant neighbourhood of zero such
that (zo + V)N M # @. It exists by . Then (zo+¥)N(M+ %) =0
— we see this equality because if we have zg + 3 =y + % with 21,20 € V and
y € M, then xg + %(zl — 29) =y € M holds, which is a contradiction.

As M' .= M + % is convex and absorbing, ensures that pys is
a sublinear functional.
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2 Hahn-Banach Theorems

Now put

fo: <£L’0> — R
Az — A\parr(xo),

then fo(z) < par(z) holds. By , there exists a function f: £ — R
with f(zo) = fo(xo) = par(x0) > 1, because g + % ¢ M’, and we also have that
f(x) < pyr(x), hence f is continuous (in we may prove that pys
is continuous as soon as out vector space is locally convex and |f(x)| < Cpar ().

And: Vz € M2 € M+ % = M, hence py(z) <1, i.e., f(z) < 1. [ |

Corollary 2.9: Let M C FE be a closed linear subspace of a locally convex IK vector
space E, xg € E\ M. Then there is a continuous, linear function f: E — K with
flzog)=1and f =0 on M.

Proof: (i) Let K = R. ensures the existence of a linear map
f:+ E— R with f(zo) >1and f(z) <1Vz € M, hence f(z) =0Vz € M (because
M is a subspace, f(Ax) = Af(z) <1V X € R), then put [’ := f(io)'

(ii) Let K = C. Then work with the real and imaginary parts. [ |

Remark 2.10: (ii) is also true for locally convex vector spaces: Choos-
ing M = {0} proves this.

A consequence of the Theorem of Hahn-Banach is the Theorem of Krein-Milman
about the geometry of locally convex vector spaces. Let’s state and prove it!

Definition 2.11: Let X be a vector space, C' C X be convex.
(i) A subset M C C is called extremal in C, if it holds:

Ve,ye CVte (0,1):te+(1—-t)ye M = z,y € M.
(ii) A point z € C is called an extremal point of C, if it holds:
Vr,ye CVte (0,1):te+(1—tly=z2=z=y =2

Example 2.12 (Extremal sets and extremal points in R2): Consider the following
example sets:

(a) (b)

Examples for an extremal set (a) and a set with a boundary, that is an
extremal set (b).
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Theorem 2.13 (Krein-Milman): Let X be a locally convex vector space and let
@ # C C X be a compact, convex subset.

(i) C contains at least one extremal point.

(ii) If @ # K C C is a compact, extremal subset, then it contains at least one
extremal point of C.

Proof: Counsider M := {@ # K C C extremal, compact}. Then, M is ordered
inductively by “2” (K1 < Ky 1 K; D Ko and @ # |J,c; K; is an upper bound
for (K;) C M, K; < K;11). Via the Lemma of Zorn, there is a maximal element
Ky € M. We now need to show, that Ky consists of only one single point. Assume,
there are zg # yo in Ky. By , there exists an f: X — K that is
continuous and linear, such that f(xg—yo) = 1. Without loss of generality, we may
assume Re(f(xo)) # Re(f(yo)) (otherwise work with Im(f)). Since Ky is compact,
we have a minimum m of Re(f) on Ky. Now let K* := {y € K, | Re(f(y)) = m}.
Then

(1) o # K* C Ky, because m is a minimum and Re(f(zo)) # Re(f (o)),

(2) K* is compact, since K* = (Re(f))~({m}) is a closed subset of a compact
set,

(3) K* is extremal in C, because it holds: If tz + (1 — t)y € K* for ¢t € (0,1),
x,y € Ko, then x,y € K*. To see this, suppose tx + (1 —t)y € K*, t € (0,1),
z,y € Ko. Then

tRe(f(z)) + (1 = H)Re(f(y)) = Re(f(tz + (1 —t)y)) =m

and Re(f(z)),Re(f(y)) > m, hence Re(f(z)) = Re(f(y)) = m and thereby
z,y € K*.

Now let tx + (1 —t)y € K*, t € (0,1), «,y € C. Since Ky is extremal in C,
z,y € Ko and by (a), we have z,y € K*. By (i), (ii), (iii), Ko is not maximal in
M which is a contradiction, hence Ky = {z}.

For (ii): If K € M, then {2} C Ky C K. |
Lemma 2.14: If M C X s a subset, then its convex hull

Konv(M) := ﬂ C
MCC,C convex

may be written as

Konv(M) = {Ztixi:xl,...,xn € M,t; ZO,ZQ = l,nelN}.
i=1

i=1
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2 Hahn-Banach Theorems

Proof: “2”: Konv(M) is convex, so Y., t;z; € Konv(M) for all z; € Konv(M):
Via induction one sees that

n+1 n+1

t;
Ztixi:tlxl+(1_tl)z (1 p ).Ti EKOHV(M).
i—1 i—2 VY1

“C”: The set {d 1 tix; :x1,..., 2 € M,t; > 0,51 t; = 1,n € N} is convex,
because

m

tthz L=1)) sy
o .

—Zt {Z .xl,...,xnEM,tiZO,Ztizl,ne]N} n
i=1 =1

and it contains M.
Corollary 2.15 (Krein-Milman): Let X be a locally conver vector space, C C X a
compact, convexr subset. Then
C' = Konv(Ext(C))
where Ext(C) := {z € C | z is an extremal point of C'}.

Proof: Let A := Konv(Ext(C)), then A C C. Now assume Jzg € C'\ A, without
loss of generality it holds 0 € A (otherwise translate the set) and I = R (otherwise
use Re, ...). A is closed and convex, by , we may find a continuous
linear functional f: X — R, such that f(z¢) > 1 and f(z) < 1Vz € A. The set

K:={xzeC]| f(x) Zgleaé(f(y)}

is non-empty (since C' is compact), compact (since it is closed) and extremal in C' (as

in the proof of ), therefore K contains an extremal point z of C'. Hence,
z € A and f(z) < 1. On the other hand, z € K, hence f(z) = maxycc f(y) > 1
which is a contradiction. [ |
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3 Dual spaces

In the first chapter, we saw that it holds: If E is a normed space, then its dual
space
E' = B(E,K) = {f: E — K linear, continuous}

is a Banach space.
Remark 3.1: There is a bilinear (i.e., linear in both components) map
(,): E'xE—K
(f;x) = [(z)

If F is a Hilbert space, then F = E’ and (-, ) is the inner product. This map is
continuous: Let (f)nenw — f and (z,)nen — , then

[fn(zn) = f(@)] < I fn = fllllznll + [ fl[l|n — =] =0,
since (z,)nen is bounded as a converget sequence.

Theorem 3.2: Let E be a normed vector space. There is a natural map i: E — E”
such that i(x)(f) := f(x) for x € E, f € E'. This map is linear, continuous and
isometric (i. e., |li(z)|| = ||z )-

Proof: i is well-defined, since i(x) is continuous and linear (i.e., i(z) € E”):
i(@) (N = @< Fllzll = i) < =]

which proves, that i(x) is continuous. Moreover, ||i|] < 1 i.e., 7 is continuous.

By Hahn-Banach ( ), we find f € E’ for a given « € E, such that
f(x)=|z|, |f]l =1 (as an extension of () — K, Az — A||z]|), therefore
i(@) (N = f@)] =zl = li(x)] =[] u

Remark 3.3: Since E” is complete, we know that the completion of E is isometri-
cally isomorphic to i(E) C E” (see Sheet 1).

Definition 3.4: FE is called reflezive, if and only if i: £ — E” is an isomorphism.

Example 3.5: (i) We have ¢, = ¢! and ¢} = /> by Sheet 2, so ¢y is not reflexive.

(ii) Put ¢ := {(an)nen | an € C, (ay) converges}, then ¢ 2 ¢g, but ¢ = ¢, (see
Sheet 4).

iii) For 1 < p,q < oo with £ +1 =1, then %/ = (7 and (7 = (P, hence (" is
p ' a
reflexive for 1 < p < co.
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Theorem 3.6: Let E, F' be normed spaces, let T: E — F be a linear, continuous

map.

i) There is exactly one map T': F' — E’, such that Vx € F',y € E
Y

(, Ty)prxr = (T'2,y) B xE-

(ii) The diagram

El/ py F//

commutes, i.e., T" extends T,
(iii) T” is continuous, linear and it holds | T'|| = ||T||.

Proof: (i) Put 7'(f):= foT € E’. Then

(@, Ty) = 2(Ty) = (x o T)(y) = (T'x)(y) = (T'z,y)
(ii) Let z € E, f € F’. Then we have

(T"(i2)) (f) 2 (T" (i), Flroxr = (12, T e = (iz)(T'f)

ST @) 2T ) mn D f Ta)por = f(Tx)

= (i(Tz))(f)

therefore, for all f € E’, it holds that 7" (iz) = i(Tx) and as this holds for any

x € E, it holds that T ot =i0T.

(iii) That T” is linear is clear. Let € F’ and y € E. Then it holds

(T"2)(y)] = [&(Ty)| < Iz Tyl < =Tyl vy € E

hence ||T'z|| < ||lz|||T||Yz € F’ which implies ||T7|| < ||T||. In particular, T is

continuous.
We also have [|77]| < |77 < |7 and ||T] < ||, because

17" = sup{IT"yll [ y € B, [|lyll = 1}
> sup{[|T"iz|| | = € E, ||z|| = 1}
=sup{[|Tz| |z € E, ||z]| = 1} = [|T|

since i: E — E" with ||i(z)|| = ||z

Remark 3.7: The norm on E is given by ||z|| :=sup{|f(x)| | f € E',| f|| = 1} (see

Sheet 3).
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4 Theorem of Baire (and some
consequences)

Consider ¢y = {(an)nen | an € C,lim;, o a,, = 0}. This is a vector space. What
is a basis of this vector space? One could try e, := (d; n)neN € o, but this is not
a basis of ¢g; it only spans f = {(an)nen | @m = 0 for m > N and some N € IN}.
We will see, that ¢y does not have a countable vector space basis. In fact: there is
no Banach space of countable infinity vector space dimension. Why?

Theorem 4.1 (Baire): Let X be a complete metric space and let M,, C X be closed
subsets, such that X = J,,c; Mn, I countable. Then there is a ng € I and an open
set U # @, such that U C M,,,.

Proof: Assume: Vo € XVe > 0Vn € N: B(z,e) N X \ M,, # &. Let zp € X,
€0 > 0. Then B(xg,e0) N (X \ M;) # & is open, hence we can find z; € X and
0 < e < % with B(x1,2e1) € B(wg,e0) N (X \ My). Chose inductively z,, € X
and 0 < g, < %50, such that

B(xzn,2e,) C B(xn_1,26,-1) N (X \ M,) # @

Hence, the sequence (2, )nen is a Cauchy sequence and thus converges to some
z € X. For n € N, we have d(x,,x) = lim,, oo d(Tn, ) < €5, which implies
r € B(wp,26,) € X\ M, so for alln € N: o ¢ U,cy Mn = X, which is a
contradiction. |

Remark 4.2: (i) Another formulation of is: Let X be a complete
metric space, U, C X dense and open subsets of X for n € N, then also
Mnen Un s dense in X

(ii) For a subset M C X of a topological space, M is said to be

(1) nowhere dense, if M has no (nonempty) open subsets,

(2) of first category, it M =, e
(3) of second category, in any other case.

M,,, with M,, nowhere dense for all n,

Another way to formulate Baire’s theorem then is: Every complete metric
space X is of second category in itself.

Corollary 4.3: There is no Banach space of countable (infinite) vector space di-
menston.

This Corollary will be proven on an exercise sheet to come.
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4 Theorem of Baire (and some consequences)

Theorem 4.4 (Principle of uniform boundedness):

(i) nonlinear: Let X be a complete metric space and
FCCr(X)={f: X =R | f continuous}

such that supsep f(z) < ooVa € X. Then there exists an open ball U C X
such that

sup sup f(x) < 0.
zeU feF

(ii) linear: Let X be a Banach space and 'Y be a normed space and A C B(X,Y),
such that suppe 4 ||Tx|| < coVa € X. Then we also have

sup ||T]] < 0.
TeA

Proof: (i) Let X = U, M,, for M,, := {z € X | f(z) < nVf € F}. Those
M,, can be written as

M, = (Y{zeX|fx)<n}=[)f"([~o0,n)),
fer feF
and thus are closed. Then use

(if) Put F:={fr: X - R,z — ||Tz|| | T € A} C Cr(X). Via (i) we have:
There exists U(xo, R) and a K > 0, such that |Tz|| < KVz € U, T € A. Let now
x € X with ||z|| = 1. Thenn

2 R 2 R 2 4
_ <2 n ZT2oll < =KVT € A.
| Tx|| (2 <2x>> HZ (2x+m0)H+ i|| zo| € -

Corollary 4.5: Let E be a normed space, M C E a subset, such that f(M) is
bounded for all f € E'. Then M is bounded (If M is bounded in every one-
dimensional direction, then M itself is bounded).

This Corollary again will be proven on an exercise sheet to come.

Corollary 4.6 (Theorem of Banach-Steinhaus): Let X be a Banach space and Y
be a normed space, (Tp)new C B(X,Y). If (Th)nen converges pointwise, then
the limit T is in B(X,Y). Therefore we have Tx = lim, . Th2z and we have
1T < suppen[[Tnll < oo

Proof: That T is linear, is clear. It remains to be shown, that T is also bounded.
For z € X, we have hat ||T,z| < M,Vn € N. By , we therefore have
s =sup,en||Tn]| < 0. Let now z € X with ||z|| =1 and € > 0. Then

ITz|| < ||Tx — Thx|| + |Thz|| <e+s Ve>0,

so |[Tz|| < sVx:|z| =1, hence |T| < s. [ |
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Another important consequence of Baire’s theorem ( ) is the so called
“Open mapping theorem”: Let E, F' be complete metric vector spaces and let
T € B(E,F). If T is bijective, then there exists T~!: ' — F and it is linear — but
is 77! continuous? Do we have T~! € B(F, E)? This is especially intersting for
E = F: Is B(X) closed under taking inverses (with respect to the multiplication
TS :=ToS)? We have to show, that (T=1)~1(U) C F is open for all open U C E.

Definition 4.7: A mapping T: E — F between topological vector spaces is called
open, if TU C F is open for all open U C E.

Lemma 4.8: Let E, F be complete metric vector spaces, T: E — F continuous,
linear. If T' is open, then T is surjective.

Proof: As E C F is open, we have that TE C F' is an open subvectorspace. So
there exists r > 0, such that B(0,7) C TE. If now x € F is given, we have
L2 € B(0,r) for suitable n € N, which implies

1
xzn(:v) eTE.
n [ |

Theorem 4.9: Let E, F' be complete normed vector spaces (or a translation invariant
metric, i.e., d(x + z,y + z) = d(z,y)) and T: E — F continuous, linear. If T is
surjective, then T is open.

Proof: For ¢ > 0, we define E. := B(0,¢) C E. Then

\J nTE. = | J T(nE.) :T< U nE5> —TE=F

nelN nelN nelN
Especially, it holds: F' = |J,,cnnTE., by there exists ng € IN, such
that ngT E. contains an open set U. This implies T(%Es) contains %U. This
implies
1 1 1 1
contains ﬁU - %U 5 0. Results so far are: It exists an open E., F. — TE,,
no

such that T(E;) D V 3 0 for an open V C F. It remains to be shown, that
V CT(Fse).

In this case: Let U C FE, y € T(F) and let 2 € E such that T(z) = y. This
implies:
30>0:2+4+0F3. CE=T(x+6E3.) Dy+ V.

Let V; =27V ie,, V; CTEy i.. Let y € V,i.e.,, y € T(E.). Then there exists
xo € E, such that Tz € y+ V7. So there exists 1 € Fy-1, with Tzg+Tx, €y €
V5 — this holds, because Tzg—y € V3 C T FEy-1.. Inductively, we get: Iz, € Eo—n,
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4 Theorem of Baire (and some consequences)

n

with s,, = Z?:o Tx; € y+Vyq1. This implies s, — y forn — oo and t,, := >, x5
is Cauchy, because for n < m:

Aty tm) < 27D 4 o=+ L 9= < 97N,

Because E is complete, t, — z € Fs.. Because T is continuous, this implies

n—roo n—oo

y — sp=Tt, — Tz e T(Es). ]

Corollary 4.10: Let E,F be Banach spaces, T: E — F linear and continuous.
Then T is surjective if and only if T is open.

Proof: “«<” is , “=7 s . |
Corollary 4.11: Let E, F be Banach spaces, T: E — F be linear and continuous.
If T is bijective, then T is continuous. Hence: If T € B(E, F) is bijective, then
T-1e B(FE).

Proof: For all U C E open, it holds (T~!)~1(U) = TU C F is open. |

Corollary 4.12: Let E, F' be Banach spaces, T: E — F be continuous and linear
and bijective. Then E and F are isomorphic as Banach spaces.

Proof: Because T and T~! are continuous, we have the estimation

allz||g < |[|Tzl|F < cofl2| - u

Example 4.13: Let F be a Banach space and let M C FE be a closed subspace.
Then F — E/M is surjective, hence also open (see also ). Let F be
another Banach space, T': E — F be linear and continuous. Then

ker(T):={z € E|Tx=0}CFE

is a closed subspace. Assume now, that T is surjective. Then, E/ker(T) = F as
Banach spaces.

Proof: We have the diagram:
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Set Sz :=Tz. S is welldefined, because & = g, if x — y € ker(T") which is the case,
if 'z =Ty. That S is linear, is clear. For the continuity, we have

152 = |Tz|| = inf{||T2|| | 2 ~ x} < [|T[|[|]].
For the injectivity: If there are &,y € E/ker(T) with S = Sy, then Tz = Ty,
which implies that © — y € ker(T), hence & = g. S is surjective, because T is
surjective. Then use . |
Definition 4.14: Let T: E — F be a map. Put
Graph(T) :={(z,Tx) € Ex F} CE X F,
Graph(T) is called the graph of T.

Remark 4.15: Graph(7T) C E x F is closed (in the product topology) if and only
if “(xp,Txy) — (x,y) = Tax =y” holds (i.e., z, = z, Tz, — y).

Theorem 4.16 (of the closed graph): Let E, F be Banach spaces, T: E — F be
linear. If Graph(T) C E X F is closed, then T is continuous.

Proof: The space E x F is again a normed space via ||(x, y)|| oo := max{||z]], ||y||} or
1 .

1, y)llx == llll + llyll or Iz, 9)ll2 == (|=]]* + [[y[|*)%. These norms are equivalent

and describe the product topology on E x F:

(Tn,yn) = (2,Y) & Tp = 2, Yn — ¥

Hence E x F' is a Banach space and Graph(T') is also a Banach space.
The maps

mg: Graph(T) — E wp: Graph(T) — F

(z,y) —r (x,y)—y
are linear and continuous. Moreover, g is even bijective, via then
also 7751 is also continuous. Then T'= g o 7@1 is also continuous. |
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5 Hilbert spaces

In order to study linear maps A: C* — C" (i.e., A € M,(C)). The values q; ; are
useful, with A = (a; ;). We have an inner product on C" via

n
= E Y
i=1

for z,y € C" and using the canonical basis {ej,...,e,} C C™ of C", where
e, = (6i,j)1§j§n S C, we have

n n
(Aej, i) —< E akjek,ez> = arjler, €)= ar;0k; =ai;.
k=1 k=1
Hence, for general linear maps A, it woud be nice to have an inner product and
a “bases” (e;) such that (e;,e;) = d;,;.

Definition 5.1: A map (-,-): Hx H — K on a K vector space H is an inner product
(scalar product appears in literature aswell), if it holds for all z,y, 2z € H and A € K

(1) Az + py, z) = Mz, 2) + ply, 2)
(ii) (z,y) = (y, z),
(iii) (z,z) >0,
(iv) (z,2) =0=2=0.

A map, that satisfies (i)-(iii) (without (iv)), is called a positive hermitian form. A
vector space H equipped with an inner product, is called pre Hilbert space.

Remark 5.2: We have

(i), (i)

(e + uy) D D s 2) V= Xz w) + 7z ).

Hence, (-,-) is linear in the first component and anti-linear in the second (math
convention as opposed to physicist convention).

Example 5.3: (i) C™ and R™ are pre Hilbert spaces via

n
> = Z %‘?m
=1

(if) C([0,1]) is a pre Hilbert space via (f, g) fo t,
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(iii) (L?([0,1]),\), where A is the Lebesgue measure, or more general (L?(X), i)
for a set X and a measure p on a o-Algebra 2l on X, are pre Hilbert spaces via

(f.9) = /X ) du(t)

For X = IN, 2l = B(IN) and p = ¢, where  is the counting measure, (L?(IN), ) = ¢2
with the scalar product

((an), (bn)) = Z anby,

nelN

Proposition 5.4: Let H be a pre Hilbert space. Put ||z|| := /{x,x) for x € H.
Then it holds:
@) llz+yl* = llz]* + 2Re((z, v)) + lyl1*,

(ii) We have the Cauchy-Schwarz-Inequality [(x,y)| < ||z||||lyl|]. We have equality
if and only if x and y are linearly dependent,

(iii) ||| as defined in (i) is a norm,

(iv) Fory € H, fy(x) := (x,y) is an element of the dual space H' such that
I1fyll = llyll-

Proof: (i) We calculate
lz+yl* = (z +y,2 +y) = (@, 2) + (2,9) + {y,2) + (y,9),

which proves the claim.

(ii) Without loss of generality, we assume y # 0 (in case y = 0, (z,y) = |ly|| = 0).
For A € K, we have

(@ + A,z + Ay) 2 (2, 7) + 2ReXz, ) + 32| (y, y).

With A := (—(z,3))((y,y)) "', we have

{z, )z, y) | [z, y)?

(Y, v) * (Y, y)
oy L)
==

0<{x+Ay,z+ A\y) = (z,z) — 2Re

Moreover, |{(z,y)|> = (z,2){(y,y) © 0 = (z + d\y,x + \y) & = —\y.

(iii) It holds ||z|| > 0 by definition of the inner product, moreover it holds
IAz]| = |A||lx]| by definition aswell as ||z|| =0 =z = 0.
For the triangular inequality, we compute

(i)
lz +ylI* = llz]1* + 2Refz, y) + lylI* < (=]l + llyl)*
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5 Hilbert spaces
(iv) fy is linear. For the norm:

(if)
[fy@)| = [{z 9] < [lzllllyll < lyll,

so fy € H'. Since fy(y) = (y,y) = |lyl|*, we have ||f,[| = [|y]- u

Remark 5.5: (i) If (-,-) is just a positive hermetian form (rather than an inner
procut), the Cauchy-Schwarz inequality still holds, ||| then only is a seminorm.

(ii) The map z — ||z| is continuous (see ) and x — (x,y) for fixed

y € H is continuous as well ( (iv)), likewise y — (z,y) for fixed x.

Definition 5.6: A Hilbert space is a complete (with respect to ||-|| from
(iii)) pre Hilbert space.

Example 5.7: (i) C" with (z,y) = Y, 2;7; is a Hilbert space (in fact, every
finitedimensional pre Hilbert space is a Hilbert space),

(i) C([0,1]) with (f,g) fo g( t) dt is no Hilbert space.

(iii) L*(X, p) with (f,g) = [ f( d,(t) is a Hilbert space, in particular ¢2
is a Hilbert space. More generally

52([) = {(ai)iej ca; € CVi e ],Z|ai|2 < OO}

iel

is a Hilbert space with ((an), (bn)) = >_;c; aib; for any index set 1.

(iv) If H is a pre Hilbert space, then its completion (in the sense of chapter 1,
using ||-]|) H is a Hilbert space with

Since ({(@n, Yn))nen is a Cauchy sequence:

[{Znyn) = (Ems ym)| < 20 = 2mllllynll + lznlllyn = yll = 0,

this inner product is well-defined and we have

TGl = VA[(zn)], [(@a)]) = lm v/(zn, 2n) = lim [lz,].

n—oo

The completion of (C([0,1], (-, -)) from (ii) is (L2([0,1]), A, (-, ).

(v) If K C H is a closed subspace of a Hilbert space, then K is a Hilbert space,
too.
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Remark 5.8: If x,y # 0, then

e
@) = cosla) =

defines an angle « € [0, 27] between x and y, with z is orthogonal to y, if (z,y) =0
We then write z L y.

Proposition 5.9: (i) Let H be a pre Hilbert space. Then the parallelogram iden-
tity holds:

Iz +yl* + o = yl* = 20|l + lyll*)  Va,y € H

(ii) If H is a C vector space with a sesquiliniear form (for instance with an inner

product), then
3

(x,y) = Zl (x4 i*y, z 4+ i%y).
gt

If {-,-) is an inner product, we have {x,y) = iZizoika + iky||2.
If H is an R wvector space with inner product, then

1
(@y) = (e +yll* = |z = yl*).

This identity is called the polarisation identity.
(iii) If H is a normed space, it is a pre Hilbert space if and only if the parallelogram
identity holds.
Proof: (i) This is an exercise on Sheet 6.
(ii) It holds

[t

3
Z 2y, z) + (z,y) +i*(y,y))

=
pM»—‘

3
72 x—|—1 y,x—|—1 Y)
k=0

=0
z,y).

—~

(iif) “=7is (i). “<=": For K = C, we define

3
1 K -k
= ity
k=0
and check, that this indeed is an inner product. ]

We wonder, if balls in Hilbert spaces round? What’s the shape of balls in Hilbert
spaces?

Let = be outside of such a ball B. Is there a unique element zy € B, such that
|z = zol| = inf{||z —y[| [ y € B}?
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5 Hilbert spaces

If we take for example H = R?, then the unit balls with respect to the norms
125 1I-ll2, [I+[loo look like this:

—F— Il
—— IMll2
oo

Unit balls in R%.
The answer to the above question is yes for ||-||2, and no for -1, ||-||cc, €- g. for
T = (270)7 ||1'7JL'0HOO = lv550 € {(lat) | te [_17 1}}

Theorem 5.10: Let H be a Hilbert space, A C H convez, closed and x € H \ A.
Then there is a unique element xg € A, such that

e — ol = int{l|le — g | y € A} = dist(x, A).

Proof: Put d := dist(x, A). Let (y,) C A be such that ||y, — x| — d. Then (y,) is
Cauchy: If we put z, := y, — x, then

= l” = llzn = 2ml” = 20z l” + 20 |) = 2 + 2]
1
=2(llyn — =1 + lzml) — A5 +ym) = z)?
< e,

for some N € IN, because ||y, — x| < d* + ¢ for n,m > N. Because A is closed,
(yn) converges to a point xg € A, with || — 2| = d.

The uniqueness of xy remains to be shown. Let af, € A with ||z — z{|| = d. Then
(yn) = (zo, xy, xo, (), - - - ) is a Cauchy sequence. [ |

Remark 5.11: In a Hilbert space, the following holds:

Vay, 20 € HVry,re iy +re = d(z1,22) : ag € B(xy,r1) N B(za, ra).
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Definition 5.12: Let H be a Hilbert space.

(i) x,y € H are said to be orthogonal (in signs: x L y), if (x,y) = 0.

(ii) My, My C H are said to be orthogonal (in signs: My L M), if (z,y) =
0Vax e M,y e M.

(iii) Let M C H. The orthogonal complement of M is defined as
M*:={zcH|zLyVyec M}

Remark 5.13: If M C H is a subset of H, then M+ C H is a closed linear subspace.

Moreover: If M C N C H, then MiZ_D N+, It holds M+ :ML. If M is a linear
subspace, then M++ := (M1+)+ = M.

Lemma 5.14 (Theorem of Pythagoras): If H is a Pre Hilbert space, x,y € H with
x L y. Then it holds:
=+ yl* = [l=[* + ly]|*.

Proof: We easily calculate
lz +yl* = (2, 2) + (2, 9) + (. 2) = {y,9) = l|=[I* + [ly[|* |
Theorem 5.15: Let H be a Hilbert space and K C H be a closed linear subspace.

Furthermore let x € H, xg € K. Then ||z — zo|| = dist(z, K) holds if and only if
x—xp € Kt

Proof: “=": Let y € K, |ly|| =1 and 2 := 2o —x. We need to show, that (z,y) = 0.
Let o € C. Then

[2)|? = dist(z, K)? < ||z — (20 + o) ||* = ||z — ay|?
=(z,2) —aly,z) —a(z,y) = la|*(y, ),

if we put o := (z,y), we get 0 < —||||?, hence o = 0.
“<”: Let y € K. Then, with the theorem of Pythagoras, we get

Iz —ylI* = lI(z — 20) + (zo = Y)II* = llz — 2ol + 2o — y* > |z — zo*.
Definition 5.16: Let K1, Ko C H be two closed subspaces of a Hilbert space H,
such that K1 1 K5. We denote then

KioKy={z+y|lreK,ye Ko} CH.
and call Ky @ K> the direct sum of Ky and K.

Lemma 5.17: If K1, Ko C H are closed subspaces of a Hilbert space, K1 1 Ks.
Then K1 N Ky = {0} and every element x € K1 & Ko has a unique decomposition
of the form x = x1 + xo with 1 € K3, x4 € Ks.
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5 Hilbert spaces

Proof: If x € K1 N K>, then « L z, thus (x,z) = ||z|| = 0, which implies z = 0.
Let = 2} + x4 be another such decomposition of = with =} € K, 2} € Ko,
then x1 — 2} = zo — 24 € K1 N Ky = {0}, thus the decomposition is unique. M

Theorem 5.18: Let K C H be a closed linear subspace of a Hilbert space H. Then
H decomposes as H=K & K.

Proof: K+ C H is a closed subspace by ,and K | K holds by
definition. It remains to be shown, that H C K @ K. Let therefore x € H. By

, there exists z¢ € K with ||z — x| = dist(z, K) and by ,
xr—1x9 € K. If we put @1 := 20, 29 := (x— 1), wehavex = 2 + 20 € KK+ .1

Remark 5.19: Such a decomposition theorem does not hold for general Banach
spaces, since such “best” approximations might not be unique.
Decompositions X = M @ N with M NN = {0} and M x N = X of a Banach
space X into Banach subspaces M, N C X might neither exist, nor be unique.
For the uniqueness: In a finitedimensional Banach space X, linear subspaces are
automatically complete, linear hulls of subsets of bases of X give such subspaces.
The Steinitz exchange lemma gives the non-uniqueness. For the non-existence: We
may not find an N, such that £{*° = ¢y @ N.

In fact: If X is a Banach space such that for each closed subspace M C X we
find a closed subspace N C X with X = M & N, then X is a Hilbert space.

Theorem 5.20 (Riesz representation theorem): Let H be a Hilbert space. Then
the map

j: H— H’
y— fy=1_(,v)

is an antilinear, isometric isomorphism. Hence H = H', in particular: H 1is

reflexive. Thus for f € H we find a y € H, such that f = f,.
Example 5.21: Let g € L*(X,p). Put f(h) := [y hgdu. Then f
fi LA (X, p) — €
hn—)/ hg du
b'e
is a linear functional. Are there more kinds of linear functinals? No! Let
f: L*(X,p) — C be a linear functional. Then f € L?(X, u)’. By ,

there is a g € L?, such that f = f,.

Proof ( ): First, we want to show the anti-linearity of j:

w1+ py2) () = (2, \yr + pyz) = Ma,y) + 1, y2) = Nj () (2) + i (y2) (),
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i.e., j is anti-linear. Via , we have that

17 = Fyll = Tyl

hence j is an isometry, and in particular injective. It remains to be shown, that
j is indeed surjective. Let 0 # f € H’. Then ker(f) C H is a closed subspace.
By , H = ker(f) @ (ker(f))*. Hence, we find y € (ker(f))*, y # 0
and without loss of generality, we may assume f(y) = 1 (normalisation). Then
f(z)y — x € ker(f), hence

0= (f(x)y—=z,y) = f(@)|yl* - (x,y)Vz € H,

Put z = HyyHQ € H, then f = f,:
ey = 89 payva e HL
[yl u
Remark: In the proof of , dim(ker(f)*) = 1 holds.
Definition 5.22: A family (z;);c; in a normed space X is called summable with
value s := ., x; € X, if

Ve >03Jy Can I, | Jo| < o0 : w;ﬁnJgJO:Hin—sH <e.
ieJ

If I is countable, this is the usual notion of series.

Remark 5.23: (i) If (2;);es is summable, then only countably many elements
may be non-zero.

Proof: For ¢ = %, we find F,, Cg, I, such that VI Dg, J D Fy:
1
IS <2
, n
ieJ

The union F' := |, . F» then is countable, hence for i € I\ F', we have

nelN
2
ol =] 3 a-2af <] X wisfom 2w <Tvn
JjEF,U{i} JjEF, JjEF,U{i} JjeF,
i.e., |l = 0. |

(i) We may formulate summability in the following way: A family (z;);er is
summable to s if and only if the net (sp)pc,, 1 converges to s, where we put
Sp = ZiEF Zj.
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5 Hilbert spaces

(iii) We have the following rules: For summable families (x;)icr, (¥i)ier, it holds:

a(in> = Zaﬂ% Zmz +Zyi = Zl“ﬂ-yi <Zl‘i,y> = Z@%i‘h)

el icl icl icl icl icl icl

Proof: For example, as <— a ) ;; x; = ), ax;, furthermore the inner product
is continuous. u

(iv) We have seen in , that in a Banach space every sequence (z;);cs
is summable if and only if (||z;]|)ier is summable. This can be shown for arbitrary
families (x;);cr.

Lemma 5.24: Let H be a Hilbert space and let (x;);er be a family of pairwise or-
thogonal elements. Then (x;);cr is summable if and only if (||z;||?)icr is summable.

Proof: Put sp:= 3, p; and tp =Y, plla;il|? for F Cg, 1. Hence, ||sp|? =tp
due to .

“=7" If sp — s, then ||sg||* — ||s]|? by the continuity of (-, ).

“<=": (sp)rcg,1 is a Cauchy-net, i.e.,

Ve>03Fy Can IVF,G Can I : Fo C F,G : ||sp — sg| < e.

Indeed: Let € > 0 and F, G Cgy, I such that Fy C F,G. Then

2
lsr = sl =|| 3 | = litrue — tonall <=
i€ FUG

Now, choose F,, Cg, I such that ||sp — sgl| < % for I,G O F,, and F,, C F, 1.
Then (sr, )nen is a Cauchy sequence. Hence, there is an s € H such that s, — s,
i.e., for F' D Fy:

[sp = sl < sk —sp.ll + sk, — sl <et+e=2¢ |
Definition 5.25: A family (e;);c; in a Hilbert space is called orthonormal system,
if <€i7 €j> = 51‘_’]'.

Lemma 5.26: Let (e;);cr be an orthonormal system in a Hilbert space H and let
T =) e; with oy € C. Then oy = (x,e5) Vi € 1.

Proof: Let sp =} . paje; for F' Cqy I. Then (sp,ex) = >, p iles, ex) = ag,
if k € F'. Hence
(z,ex) «— (sp,er) = ax

for some F' C I. [ |
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Theorem 5.27 (Bessel’s inequality): Let (e;);er be an orthonormal system in H.
Then we have

Z\(aﬁ,eiHQ <|z|* VazeH. (5.1)
iel
In particular, (3_,;cp(x,ei)ei) gy, 1 converges. We have equality in if and

only if x =3, (x,ei)e;.

Proof: We prove only for I =N (for arbitrary index sets, work with
techniques as in ). Put s, == (%, e;)e;. Then for 1 <k <mn, it
holds

n
(S, ex) E x,€i)0; k= (T, ex).
=1

Hence (x — sp,ex) = 0Vk < n,ie., (x — s,,8,) = 0. By (Lemma 5.14), we then
have

n
Il = llz = sal® + sal® = sl = | > @, e
n=1

=Y lenr

Therefore, (37 |(x, :)|*)new converges and >, .|z, €;)|* < [|z||?. Finally, s, —
x holds if and only if |[s,,[|? — [|z]|?. “=" is true due to the continuity of ||-|| and
“«<" is shown via ||2]|? = ||z — sn > + [|snl|®> — ||z]|%. [ |

Theorem 5.28 (Parseval): Let (e;);c; be an othonormal system in H. Then the
following are equivalent:

(i) (ei)ier is a mazimal orthonormal system (i. e., it is not included in a larger
orthonormal system),
(ii) z LeVielI <z =0,
(ili) Ve e H:x =), /(x,e)es,
(iv)
(v)
If one (and thus all) of these conditions is satisfied by (e;)icr s called an orthonor-
mal basis.

Vo e H:|lz)* = el e,
The linear span <ZZV:1 a;e; | o € C,N € IN) is dense in H.

Proof: “(i) = (ii)”: Let © # 0, x L ¢;Vi € I, then (e;);er U {ﬁ} is a larger
orthonormal system.
“(ii) = (1) If (e5)ier S (€:)icr, then thereis i, € I'\ I: e;, L e;Vie I

“(iii) < (iv)”: This is
“(
(

iil) = (ii)”: If (x,e;) =0Vi € I, then r=3 i {r,e)e; =0.
“(ii) = (iil)”: By , the series )., (x, e;)e; converges. Put
zi=x— Z(x, €;)e;.
iel
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5 Hilbert spaces

Then
(z.€5) = (z,e5) = > (m,e;){eire;) =0 Vjel,
iel

but then z = 0.

“(iii) = (v)”: This is obvious.

“(v) = (iii)”: Let « 1L e; Vi € I. Choose z,, = N: a;ine; — X asn — oo.

j=1%j,n€;j

Then

[2]* = llznll® = (n, 2n) = [{@n, 20 — 2)| < [J2nlllzn — 2] — 0. u

Remark 5.29: If (e;);cs is an orthonormal basis, then the elements e; are linear
independent: For a finite linear combination of these e; we have:

N N
Zaiei:0:>0:<2aiei,ej>:aj V]
i=1 i=1

But an orthonormal base is no vector space base, since we might need infinite linear
combination as opposed to finite linear combinations.

Theorem 5.30: Let H be a Hilbert space, (e;)icr and (f;);es two orthonormal bases.

Then |I| = |J| (i.e., an orthonormal base is not unique, but its cardinaility).
Proof: If |I| < oo, via |J| < oo and as we know from linear algebra,
we then know |I| = |J|.

If |I|,|J| = oo, then @ # I; := {i € I | (e;, f;) # 0} is countable via
(i). Furthermore, I = J;.; I;, hence |I| < [J|. Because the same argument works
for J, then |J| < |I|. The Theorem of Schroeder-Bernstein-Cantor now ensures
1] =11 .

Theorem 5.31: FEvery Hilbert space H admits an orthonormal base.

Proof: Let (e;);er be an orthonormal system in H. The set of orthonormal systems
containing (e;);es is inductively ordered, hence by the Lemma of Zorn, there is a
maximal orthonormal system in H. |

Definition 5.32: Let H be a Hilbert space. The (Hilbert space) dimension dim H
is defined as the cardinality of an orthonormal base of H. If dim H is countable,
we call H separable.

Remark 5.33: Using the algorithm of Gram-Schmidt, we may show that a Hilbert

space is separable if and only if it is separable as a Banach space (i. e., it contains
a countable dense subset).
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Proof: “=": Let (e;);er be a countable orthonormal base of H. Then

{g:xiei:NE]N,xjeQ—i—iQ}CH

=1

is dense and countable.

“<": Let E C H be dense. Choose a sequence x1, Ts, ... of linearly independent
vectors, such that {z; : ¢ € I'} is maximal linearly independent. Then the vectors
defined by

n

1 1
e1 = +——T1 , E€ptl = ($n+1 - Z<$i7€i>€i)
e

[Zn+1 — 225 (i e i=1

where e,4+1 # 0, because the x; were assumed to be linearly independent, form an
orthonormal base of H. |

Example 5.34: (i) Let H = C". Then dim C™ = n. Note that in this case, the
vector space dimension and the Hilbert space dimension coincide.

(ii) Let H = ¢2. Then dim ¢? = oo and ¢? is separable with orthonormal base
(ei)ie]N, Where €; = (5i,j)j€]N'
Definition 5.35: Let H, K be Hilbert spaces. An isomorphism between H and K is

a linear map
U:H— K

which is surjective and that satisfies
(Uz,Uy) = (x,y) Va,yeH.

Remark 5.36: An isomorphism U: H — K is injective, more precisely it is an
isometry since for all z € H:

[Uz|| = (Uz,Uz) = (z,2) = |||

Therefore, U preserves the whole Hilbert space structure.

If dim H = dim K < oo, surjectivity is granted because linear maps between
vector spaces of the same finite dimension are surjective if and only if they are
injective. However if dim H = dim K = oo, we really need the surjectivity.

Theorem 5.37: Two Hilbert spaces H, K are isomorphic if and only they have the
same dimension.

Remark 5.38: If H is a separable complex Hilbert space, then H is isomorphic to
C™ or £2. Hence up to isomorphisms, there is only one infinitedimensional complex
separable Hilbert space. In fact L?[0,1] = ¢? = L?(IN).

More general, if H has an orthonormal base (e;);c; with an arbitrary index set
I then H = (2(I).
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5 Hilbert spaces

Proof: “=": Let U: H — K be an isomorphism and let (e;);c; be an orthonormal
base of H. Then (Ue;);cs forms an orthonormal system in K. If now y L Ue; for
all ¢ € I, then there is x € H, such that Uz = y, hence

(z,e) = (Ux,Ue;) =0Vi eI,

so via the Parseval equality ( ), © = 0. Then, because U is linear,
y = 0. By , (Uey)ier is an orthonormal base of K.

“&": Let (e;)ier be an orthonormal base of H and (f;);e;r be an orthonormal
base of K. Put Ue; := f;. This defines a linear isometry U: H — K. |

Example 5.39: (i) The Hilbert space C™ (with the standard inner product) has
the orthonormal base {e1,...,e,}, where e; = (J; j)1<j<n-

(ii) The Hilbert space £% has the orthonormal base (e;)ic; with e; = (6; ;) jen-
This is no vector space base of £2!

(iii) For an orthonormal base of L?([0,1]) we will need the Theorem of Stone-
Weierstraf3.
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6 Theorem of Stone-Weierstraf3

We can approximate continuous functions f € C([0,1]) with simpler functions,
namely polynomials, with respect to |*||co-

For the proof of Stone-Weierstra’ theorem, we only need little very algebraic
properties of {Polynomials with complex coefficients} = C[X] C C(]0,1]). Let K
be a compact metric space. Consider

C(K):={f: K — C| f continuous}
endowed with || f||oc := sup,cg|f(x)]. Then (C(K),||-||o) is a Banach space.

Definition 6.1: A subset A C C(K) is called a *-subalgebra with unit (or unital
*-subalgebra), if

(i) fLgc A= fge A,

(ii) f,ge A,u, A€ C= puf+Ag € A,
(iii) fe A= fe€A,

(iv) 1 € A.

A is said to separate points, if for all s,t € K,s # t, there is f € A, such that
f(s) # f(1).

Example 6.2: The set
P := {Polynomials in X and X} C C([0,1])
is a unital *-subalgebra seperating points. The same holds for
P := {Polynomials in R} C Cr([0,1]) = {f: [0,1] = R | f continuous}.

Theorem 6.3 (Stone-Weierstraf3): Let K be a compact space and A C C(K) be
a unital *-subalgebra, separating points. Then A C C(K) dense (with respect to
I'lloc ). In particular: If A is closed, then A = C(K) holds.

The same holds true for the real case, i. e., for a unital *-subalgebra separating
points A C Cr(K).

Proof: Let A C C([0,1]) be a closed unital *-subalgebra separating points.
DQIffeA f>0thenfeA

Proof (of @D): Without loss of generality let 0 < f < 1 (normalisation!). Put
g:=1— f, then 0 < g <1 aswell. It holds

m:mzl—ZaHg”(t) Vte K
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6 Theorem of Stone-Weierstrafl

via the Taylor series expansion of g. This taylor series expansion converges uniformly
n [—1,1], hence

A3 hy, = Z ang™(z) = \/f (with respect to ||]/oc).
n=1
Because A is closed via assumption, we then have that /f € A. ]
@ Let f,g € A be real-valued. Then min{f, g}, max{f, g} € A.

Proof (of @): For f,g € A we have the representations

: f+g9—1f-g f+9+1f—g
min(f,g) = THIIZI g gy = LRI 20
Both of those are elements of A, because |f| = /ff for any f € A. [ |

® For a real-valued f € C(K) and e >0, there isg € A: ||f — glleo < €.

Proof (of @): For s,t € K, s # t, there is f,; € A such that f,.(s) = f(s),
fs(t) = f(t): Since A separates points, there is h € A with h(s) # h(t). Put

h(zx) — h(t)

fop(@) = f(t) + (f(s) — f(t))m-

Now put
Ugi={z e K| fsi(x) < f(x)+e}.

Due to the openness of (fs; — f)~!(g,00), those U; are open, furthermore t € U;
holds. Thus the family (U;)ick is an open cover of K. Because K is compact,
there are t1,...,t,, such that K = (J;_, Uy,. Put hy := minj<;<, fss, € A and
put
Vsi={x € K| hs(x) > f(z) —€}.

Again, the V; are open and (V;)secx forms an open cover of K, thus there are
51,...,5m € K with K = U;n:l Vs, Now put g := maxj<;j<m hs, € A. It holds
hs, < f4+eforall j,sog< f+ecandg>f—¢ ie, |f—glo<e [ |

Let now f € C(K) be an arbitrary continuous function. Via @), there exist
sequences (gn)nen, (hn)new € A such that g, — Re(f), hp, — Im(f), i.e.,

gn +1ih, — [ (with respect to ||||oo)
and therefore, A C C(K) is dense. [ |

Corollary 6.4 (Theorem of Weierstraf3): The algebra P of polynomials is dense in
Cr([0,1]).
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Remark 6.5: The space (P, ||'||) is no Banach space (refer to Sheet 5, Exercise
2). The completion is (C([0, 1]), [||lco)-
N

n=

Corollary 6.6: (i) The set of polynomials >
C(SY), where z=™ := 2" for n > 0 and

$t:={zeC]||z|=1}.

_N 2" for a, € C is dense in

(ii) The set of functions e,(t) := (v/2r) " tel™ fort € [0,27] and n € Z is an
orthonormal base of (L?([0,27]), \).

(iii) It holds L%(]0,2n]) = ¢? as a Hilbert space, likewise L?([0,1]) = 2.
Proof: (i) The set

{ XN: anz"™ :ay, € C,NEIN} c o(sh
n=—N

is a unital *-subalgebra, seperating points (2" - 2™ = 2" for n,m € 7). Via
, this *-subalgebra is dense.

(ii) Put
Cper == {f:[0,27] = C[ £(0) = f(2m)}
and consider the mapping
®: Cper[0,271] — C(Sh)
O(f)(e") = f(t).
Then & is isometric, surjective and ®(v/27e,)(z) = 2", as
@(men)(eit) _ \/ﬂen(t) _ eint _ (eit)n

with z = e'*. Since ® is linear, linear combinations of e,, are mapped to polynomials
>, an2"™, therefore the linear combinations of e, are dense in Cpe,[0,27] with
respect t0 ||||o. Since

27 21T
112 = / P dt < / 1 lloe dt < 2] oo,

thus the linear combinations of the e,, are dense in Cpe, [0, 27] with respect to |-||2.
We have Cpe [0, 271] C C[0,27] C L?[0, 2] dense with respect to |-||2. It remains
to be shown, that (e,)ncz are indeed an orthonormal system with respect to (-, -)

in L2[0,2], as it then is an orthonormal base via (v).
It holds
27 1 27
(€ns€m) :/ en(t)en(t) dt = — L T M
0 21 Jo ’

0 (en)nez is indeed an orthonormal base.
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6 Theorem of Stone-Weierstrafl

(iii) (en)nez is countable. [ |

Remark 6.7: If f € C[0,2n], then Y, _, cn€!™ is nothing but its Fourier series.
Hence the statement about (e,)nez being an orthonormal base is just Fourier
Analysis. But note: The approximation is only with respect to ||-||2 rather than
pointwise or uniformal approximations.
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7 Bounded operators on Hilbert
spaces

Reminder 7.1: Let H be a Hilbert space. Then
B(H) :={A: H — H linear, bounded}

is a normed vector space with the operator norm (refer to ,

and ). This vector space is even a Banach space, because H
is a Banach space and furthermore an algebra via ST := S o T. Finally, we have
1ST|| < [IS[I1T]]-

Example 7.2: (i) Let H = C™ and ey,...,e, be the canonical base of H, then
A € B(C") is uniquely determined by (a; ;j)1<i j<n With Ae; = 377, a;e;. Hence
B(C™) = M,,(C), the complex valued n x n-matrices.

(ii) Let H = L%([0,1],A) and k: [0,1] x [0,1] — C continuous (or more general:
ke L*([0,1] x [0,1],A?), i.e.,

1 1
/ / le(s, )2 ds dt < oo.
0 0

Then K: L%[0,1] — L2[0,1], (Kf)(s) := fol k(s,t)f(t)dt is a bounded linear
operator K € B(L?[0,1]), the integral operator with kernel k. K is bounded, as

K| = / (K f) ()| ds = / / K(s.0) /(1) dt| ds
= (ks ) TP

1
< / k(s 1) 2 d | ]2,

therefore || K f|[2 < [y [y 1k(s,t)|>ds dt]| £ = |KlI3]| |3, therefore | K| < [[K[|3 or,
if k is continuous: | K| < ||k co-

Our idea is: K has a “continuous matrix” (k(s,t))s tcjo,1- Indeed, the above
calculation works for any measure space L?(X, i), too, hence with X = {1,...,n},

u({t}) = 1 and
1 t=r1,
€; ‘=
0 else,

we have
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7 Bounded operators on Hilbert spaces

Reminder 7.3: Let E, F be normed spaces and T' € B(E, F'). Then there is exactly
one map T € B(F', E’) such that (z,Ty)pxr = (T'2,y)pxrVa € F',y € E and
17"l = |17 (3.6).

If E, F are Hilbert spaces, then E' 2 E, F' = F ( ). So, how does
T’ look like, seen as an operator in B(F, E)?

Proposition 7.4: Let H, K be Hilbert spaces and A € B(H,K). Then there is a
unique operator A* € B(K, H) with (Az,y) = (x, A*y)Vax € Hyy € K.

Proof: Consider

f+H—C
x — (Az,y).

Then f € H', since f is linear and bounded:

[f(2)] = [(Az, y)| < | Az[[[ly[] < [|Alll=[l[ly]l,

so ||l fIl < I Allllyll- By , we find 2, € H such that f = f, , ie,

<A5E,y> = <.’£, Zy>
Put A*y := z,, then A* is linear, because

(z, A*(Ay1+py2)) = (Az, Ay +py2) = MAz, y1)+1(Az, y2) = (2, AA y1+pA*ys),

and A* is bounded, because |[A*y|| = ||z,|| = [[f2, || = [IfIl < [|Allllyll, therefore
[ u

Remark 7.5: A* is basically A": K’ — H' and ||A*|| = ||4].

Proof: The diagramm

commutes, because

(Ajra)(y) = (A'f2)(y) = f(Ay) = (Ay, z) = (y, A"x) = fa=(y) = (A7) (y),

so A’ o ji = ju o A" and || As]| = [j7" 0 A’ jx|| = | A’ =||A]|, using the results
and . [ |

Proposition 7.6: The map *: B(H) — B(H) is

(i) antilinear, i.e., (WA + vB)* = A* +UB*, u,v € C,

(i) isometric, i.e., ||[A*]| = || A|l,
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(iii) ‘nvolutoric, i.e., A** = A,
(iv) it satisfies (AB)* = B*A*,

(v) and the C*-condition: ||A*A| = || A%,

(vi) If A € B(H) is invertible, then also A* is invertible and (A*)~! = (A~1)*.
Proof: We notice, that “(Az,y) = 0Vz,y € H = A = 0” (indeed: “(Ax, Az) =
0= Az =0VYz € H”), hence: If

(Az,y) = (Bx,y)Va,y € H,

then A = B (because then ((A — B)z,y) = 0V z,y). We may thus check (i), (iii),
(iv) directly:
(A%, y) = (x, Ay) = (Az,y)Vo,y e H = A= A",
((AB)*x,y) = (x, ABy) = (A*z, By) = (B* A"z, y).
Ad (v): Tt holds ||Az|? = (Az, Az) = (A* Az, z) = ||A*Al|||z||, hence ||A]]? <
|A*A||, but ||A*A| < ||A*||||Al| = ||Al|?. (i) was already shown in .

Example 7.7: (i) Let H = C" and A = (a;;)1<ij<n € M,(C) = B(H). Then
A* = (@;,j)1<i,j<n, since

(A*ej,el) = <€j,A6i> = <ej,Zak7iek> = EMJM = Qj-

(i) Let H = L?[0,1] and K as in . Then K™ is the integral operator

with kernel k*(s,t) := k(s,t), since

(K*f.g) = (. Kg) = / O, @) dt

- / / F(k(E, ) dt ds = / (K £)(5)9(5) ds = (K £, g)
0 0 0

Proposition 7.8: If A € B(H), then ker(A) = im(A*)*, ker(A)L = im(A*).

Proof: If x € im(A*)*, then for all y € H : (z, A*y) = 0 = (Az,y) which holds if
and only if Az =0, i.e., z € ker(A). Furthermore ker(A4)* = im(A*)*++ = im(A*)
via Sheet 6. [
Definition 7.9: (i) A € B(H) is called selfadjoint (or hermitian) if A = A*,

(ii) A € B(H) is called normal if A*A = AA*,
(ili) U € B(H) is called unitary, if U*U = UU* =1 :=idy € B(H),
(iv) V € B(H) is called isometry, if V*V =1,
(v) P € B(H) is called (orthogonal) projection, if P = P* = P?.
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7 Bounded operators on Hilbert spaces

Remark 7.10: (i) It holds V*V =1 if and only if
(Va,Vy) = (V*Vz,y) = (z,y)Va,y € H,

i.e., V is isometric in the previous sense.

(ii) U is unitary if and only if U is isometric and surjective, i. e., an isomorphism
of Hilbert spaces as defined in

(iii) If P is a projection in the sense of (v), there is a closed
subspace K C H, such that H = K@ K+ and P(x +y) =x forzx +y € K ® K.
Conversely, if K C H is a closed subspace with P(x +y) = x, then P = P* = P?
(see Sheet 7).

Remark 7.11: If A = A*, then (Az,z) € RVz € H:

(Az,z) = (z, Ax) = (A"z,x) = (Ax, x)

and [|A[| = sup ;=1 {[{(Az, z)[}.
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8 Spectral values of bounded
operators

As motivation for this chapter: Let A € M,,(C) with A = A*. Then A is equivalent

to the diagonal matrix of eigenvalues: A ~ diag(\1,...,\,), more precisely: There

is a unitary matrix U € M,,(C), such that UAU* = diag(A1, ..., A, ). These matrices

are determined by their eigenvalues. How about general bounded operators?
Now consider for k € L?([0,1] x [0,1]) the “Fredholm integral equation”

/0 K(s,6) £ (1) dt ~\f(s) = a(s)

for a given g and A € C. We want to find such an (or this? Is it unique?) f.
Abstractly speaking (in the situation of ): What are solutions f of
Kf —\f = g? If (K — A1) is invertible, f = (K — A1)~!g is a solution to our
equation.

In finite dimensions A — Al is non-injective if and only if A is an eigenvalue
(i,e, Jx #0: Az = Ax). A — Al also is non-injective if and only if A — Al is
non-invertible as shown in any lecture on linear algebra. But if the involved spaces
are infinite dimensional, “T" injective if and only if T surjective if and inly if T
invertible” do not hold.

We therefore have more possibilites to define a generalisation of eigenvalues.
This will lead to the notion of the spectrum.

Definition 8.1: Let A be a C-vector space.

(i) A is an algebra if there is a bilinear, associative multiplication on A that
satisfies A(zy) = (A\x)y = z(M\y)Va,y € A, A € C.
(ii) A is a normed algebra if A is an algebra, that is a normed vector space with
eyl < [lz[[llyl
(iii) A is a Banach algebra, if A is a complete, normed algebra.

Example 8.2: (i) (B(H),||||) is a Banach algebra, where H is a Hilbert space
(or a Banach space),

(ii) (C(K),||"llso) is Banach algebra, where K is a compact space.

Remark 8.3: The multiplication in a normed algebra is continuous (as in

).
Definition 8.4: Let A be a unital Banach algebra and let z € A. Then

(i) Sp(z) :={X € C| A1 — z is not invertible} C C is called the spectrum of x,
(ii) p(z) := C\ Sp(z) is called the resolvent set.
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8 Spectral values of bounded operators

Sp(z) is sometimes denoted o(z) in literature on the topic.

Remark 8.5: If now A = B(H), then we may also define eigenvalues: Given an
operator T' € B(H), a complex number A € C is an eigenvalue of T, if there is a
0 # x € H such that Tz = A\z.

The set 0,(T") := {Eigenvalues of T} C C is called the point spectrum and we
observe that if A € 0,(T), then (A1 —T') is not injective and in particular (A1 —T')
is not invertible, hence we have 0,(T") C Sp(T'). Spectral values are generalised
eigenvalues.

There are examples for ¢,(T) = Sp(T), 0,(T) € Sp(T), 0,(T) = @ (but it
always holds Sp(T) # @).

Example 8.6: Let X = C([1,2]). Then B(X) is a Banach algebra with unit (refer
to and ). Consider

T:X — X
(TF)(E) — tf (1),

then T € B(X) with |T|| = 2. We have that 0,(T) = @: If Tf = \f, then
tf(t) = Af(t)Vt € [1,2], hence f(t) = 0Vt # X and due to the continuity of
f it holds f = 0. In particular A1 — T is injective for all A € [1,2]. For the
surjectivity: First let A € [1,2] and assume A1 — T was surjective. Consider
g(t) =1Vt € [1,2]. Due to the surjectivity of T, there was f € C'(X) such that
1=g@®)=A1=T)f(@t) = (A1 —¢)f(t), but (A —¢)f(t) =0 for t = A\

Now let A ¢ [1,2]. Then (A1 —T)~ ! is given by (A1 —T)~1f)(t)
hence in this case Sp(T) = [1, 2].

So our T has no eigenvalues, but many spectral values.

Lemma 8.7: Let A be a unital Banach algebra.

(i) Ifx € A with |1 — z|| < 1, then x is invertible and =" =572 (1 — z)™.
(ii) If = is invertible and y € A with ||z —y|| < (|a='])~", then y is invertible.
(iii) GL(A) :={z € A |z is invertible} is open, and

GL(A) — GL(A)

x— !

18 continuous.

Proof: (i) For z := 1 — z, we have that ||z|| < 1, hence Y~ ,|z||" is abosolute

convergent (||z"]] < ||z||™ via the submultiplicativity), hence it is also convergent
via . Moreover:

N+1

oo N N
sz”(—(l—z)ZZ”:ZZ"— ZZ’L:1—2N+1—>1
n=0 n=0 n=0 n=1

since ||z|| < 1.
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(ii) It holds that

11 =ya™ = (@ = y)a™ | < o —yllla""] < 1,

i.e., yz~! is invertible and thus y is invertible.

(iii) For ||z —y|| <e < (J=71]])}, we have B(z,¢) C GL(A) for z € GL(A) by
(ii). Now let ) — = with zx,2 € GL(A). Then ||z) — || < (2||x71]])"te for A
large and 0 < € < 1. Hence

— _ 9
=™l =l —axa™ | < 5 <1,

-1

thus via (i), zxz~" is invertible with

[ee] oo
zryt = ()Tt = Z(l —zax~ Z (1 —zyz™H)",
n=0 n=1
hence
o0
lzxt =27 = o™ @ay = D < Jlz77 Z||1 — x|

<z Za— < ellz"Y. n

Proposition 8.8: Let A be a unital Banach algebra and let x € A. Then Sp(x) is
compact and

Sp(z) € {A € C[[A] < [l[]}.

Proof: Firstly, we notice that the resolvent set p(x) can be written as p(xz) =

[ 1(GL(A)), where f,: C — A, X\ — A1 — z is continuous. Via , p(x) is
open and Sp(z) is closed.
Secondly, if [A| > ||lz||, then A —x = A(1 — §) is invertible via , since

IA|7Y|z]| < 1, hence A ¢ Sp(z) and therefore Sp(z) C {A € C | |A| < ||z||} is
bounded. n

Theorem 8.9: If A is a unital Banach algebra, then Sp(x) # & for all x € A.

Proof: Let x € A. For \ € p(x), put Ry(z) := (A —z)~ L.
O We have Rx(xz) — R, (x) = (1 — N Rx(x)R,(x) VA, p e C.

Proof (of D): It holds that
Ba(x) = Ry(2) = Ba(@) Ru(2) (1 — ) — (A — 2) B (0) R, (a)
= (= A Ba(z) Ry (),

where we used Ry (z)R,(z)(n —x) = (1 — x)Rx(x) R, (x). In principle ab # ba for
a,b € A, but here this doesn’t cause issues because

A=2)(u—2)=(u—2) A=) — (n—2a)Rala). .
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8 Spectral values of bounded operators

@ Assume that x is invertible and let f € A’ such that f(z~') # 0. Then
g: p(x) = C,g(A) := f(Rxr(x)) is holomorphic and g(0) # 0.

Proof (of @): Consider

MM—QW):f(RA@—RAw>g

A—p N—p —f(Ba(z)Ryu(2)) = —f(R3(2)) as p — X

where we used, that z — 2! is continuous and therefore i+ R,,(z) is continuous
aswell. Thus g is holomorphic with g(0) = f(Ro(x)) = —f(z~1) # 0. [ |

Assume, that Sp(z) = @. Then 0 ¢ Sp(z), i.e., 0 — x is invertible and z is
invertible. By the Theorem of Hahn-Banach , we find a functional
f € A with f(z=!) # 0. Thus the function g from @) is a whole function.

® g is bounded, because g(\) — 0 for A — oco.

Proof (of @): Put z:=1— A"!a. Then |1 — z|| = |\ Y|z|| < 1 for |A| large. Via
(i), z is invertible with 2=t = >~ (1 — 2)", hence

I~ < lel =012

and thus )

ll=]l *

(1= A1) < N
L

Finally, it holds

[RA@)]| = [[(A = 2) 7 = I THI = A" ) 7|
1 1
< =
A= 25 AT=llzl

— 0 as |\ = 0. [ |

We conclude that by Liouville’s Theorem g is constant and from g(A) — 0 as
|A] = 0, we infer that g = 0, which contradicts g(0) # 0. [ |
Definition 8.10: Let A be a unital Banach algebra and let € A. Then

r(z) = sup{|\| | A € Sp()}

is called the spectral radius of x.
Remark 8.11: From we already know that r(x) < ||z||.
Example 8.12: We may have r(z) < |z||: For instance with A := M(C) and

z:=(94). Then A —z = (}3!) is invertible for all A # 0, thus Sp(z) = {0}.
Hence r(z) = 0, but ||z|| # 0.
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Theorem 8.13: Let A be a unital Banach algebra and x € A. Then

r(z) = lim {/||x™].

n—r oo

Proof: If A € Sp(x), then A\ € Sp(z™): From Analysis I, we know of the handy
formula
Nz = (A=) AT N T2 e A2 ),
If |A™ < ||z™]|, then |A] < ¥/||z"|| and thus r(z) < liminf, . {/||z7|. We
need to show, that r(x) > limsup,,_,., ¥/||z"||. Consider

oo n

R.(z):=(z—xz)"' = Z %

n=0

for ||z|] < |z| (in particular z € p(x)).

If this was a series in C (rather than A), its radius of convergence of this power
series was limsup,,_, ., ¥/[|z™||. Since it is a series in A, we have to use the same
trick as in the proof of . Let f € A’. Like in the proof of ,
the function g: p(z) — C,z — f(R.(x)) is holomorphic and g(z) = >~ J;(wfl)
for |z| > ||=|, in fact even for |z| > r(z). Hence

lim sup|f(x)\% <r(x)

n—oo

by the formula of Cauchy Hadamard for convergence radii of power series. For
1
r > r(x), we thus find an N € IN such that |f(2™)|» < rVn > N and hence

n
sup @) < o0
nelN| T
for all f € A’. By the principle of uniform boundedness , we see that

{f—: | n € N} is bounded. Hence there is C' > 0 such that ||2"| < Cr™ hence
|#"|| < Cwr, which implies limsup,, . [|z"||* < r¥Vr > r(z) and thus

lim sup||z"|| W< r(z).
n— oo .
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9 Compact operators and their
spectral theorem

Remark 9.1: Let F be a normed vector space. Then the following are equivalent:
(i) FE is finite-dimensional,
(ii) {z € E|||z|] < 1} is compact.
If now dim H = oo, then A{z € H | ||z| < 1}) € H might be noncompact
for some A € B(H) (for instance for A = idy). This makes spectral theory for
A € B(H) much more complicated. Hence we first consider operators, which are

in a way “close” to the finite setting.
We want a spectral theorem similar to the one in Linear Algebra:

Theorem: Let H be a Hilbert space with dim(H) < oo and let A € M, (C) be
normal. Then there is a unitary U € M, (C) such that

UAU* = diag(A1, ..., A\n),
where Sp(A) = op(A) ={\; |1 <i<n}.
We will show such a theorem for compact operators A € K(H) first.

Definition 9.2: Let X, Y be Banach spaces. A linear operator T: X — Y is called
compact, if {Tz | ||z|| <1} is compact. We write

K(X,Y):={T: X =Y linear, compact} K(X):=K(X,X).
Remark 9.3: (i) We have K(X,Y) C B(X,Y). Indeed, since {Tx | ||z| <1} is
bounded, we find a constant C' such that [|[Tz| < C for all ||z| < 1.
(ii) T is compact if and only if TM is compact for all bounded sets M C X.
Proof: “<”: M = {z | ||z|| < 1} is bounded.
“=7": If M is bounded, then there is a constant C such that M C {z | |lz| < 1}
and thus TM C C{Tz | ||z| < 1}. [ |

(iii) T is compact if and only if for any bounded sequence (z,),ecn the sequence
(Txn)nen possesses a convergent subsequence.

Proof: “=": Let (,)nen be bounded and without loss of generality let ||z, || <1
for all n € IN. Then

(T [n e N} C{Tz [ =]} <1}

is a compact subset. Therefore, (T'z,),en has a convergent subsequence.
“<7: Let (Tzp)new C {Tx | ||z|| < 1}. Then (Tz,)nen has a convergent subse-
quence by assumption. [ |
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Definition 9.4: A (twosided) ideal in an algebra A is a linear subspace I C A, such
that AI,IA C I. If A is a Banach algebra and I is closed, we write I < A.

Theorem 9.5: Let X be a Banach space. Then K(X)<B(X).

Proof: First, we want to show that K (X) is a linear subspace. In order to show
this, let S, T € K(X) and M C X be bounded. Then

(S+T)M C SM + ST

is compact, because “+” is continuous.

Let now S € K(X), T € B(X) and M C X be bounded.

“K(X)B(X) C K(X)”: TM is bounded (since T is bounded) and therefore,
S(TM) is compact, thus ST € K(T).

“B(X)K(X) C K(X)”: It holds that TS(M) C T(SM), thus

TS(M) C T(SM) = T(SM),

because SM is compact and T is continuous. Hence, T.S(M) is compact.

It remains to be shown, that K (X) is closed. Let (T},)nen € K(X) be a sequence
with T,, - T € B(X) (with respect to the operator norm). Let (z,)neny € X
be bounded. If (Tx,),en admits a convergent subsequence, we know that T is
compact.

(i) Construction of a subsequence (Yr)ren 0f (Tn)nen: Since T is compact, we
find a subsequence (:1:,(;)) ke, such that (Tlxg)) ren converges. Inductively, choose a

Eﬂ""-l)) (n) +1))

subsequence (x ren of (x;)kew such that (Tn+1x,(€" kel converges. Since

(x,(gn))kE]N is a subsequence of (z,(cm))ke]N when m < n, we know that (me,(fn))kew

converges, too. We therefore put y := x,(ck) .

(ii) The constructed sequence (yi)ren converges: Let € > 0, ng € IN such that
IT — T, || < e (which is possible since by assumption T,, — T'). Put

M = sup||yx| < oo;
kEN

this is well-defined, since (yx) C () is bounded. Let N € IN such that ||T,,,yx —

Thoyill < e for all k,1 > N ( (yr)ren is a subsequence of (x,(cno))kem up to finitely

many entries, hence (T),,yx)ren converges). Then, for k,1 > N:

1Tyr — Tyl < 1 Tyx — Trp sl + [ Tnoyr — Tnoyill + 1 Tnoyr — Ty, |l
<eM+e+eM < 3Me

Hence (Tyy) is Cauchy and thus converges. [ |
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9 Compact operators and their spectral theorem

Definition 9.6: An operator T: X — X is of finite rank, if T X is finite-dimensional.
We put
E(X):={T € B(X) | T of finite rank}

Remark 9.7: (i) If T € E(X), then T € K(X) since

{Tw |l <1} S{y e TX | [lyll < C}

is compact via and
(if) id: X — X is compact if and only if X is finite-dimensional (“<=": (i), “=":
).
(iii) As in , one can show that F(X) C B(X) is a two-sided ideal,
in general not closed. Also, E(X) C K(X).

Theorem 9.8: Let H be a separable Hilbert space. Then E(H) = K(H).

This theorem is wrong for general Banach spaces, which was shown by Enflo in
1973.

Proof: “C” holds in general. We now need to show “2”: Let T € K(H) and let
(en)nen be an orthonormal base of H — without loss of generality, dim(H) = co.
Consider H,, := (e1,...,e,) and let P, € B(H) be the orthogonal projection
onto H, (refer to sheet 8). Put T, := P,T € E(H). We need to show, that
|T, — T|| = 0. Let 2 € H. Then we have

n

To(z) = Py (Tx) = Z(Tx,ek>ek — Z(T:U,ek>ek
k=1 i=1

via . This shows that ||T,,x — Tz| — 0 for all z € H. Let € > 0.
Since T is compact, we have that {Tx | ||z|]] < 1} C U;nzl B(T'z;,¢) for finitely
many &i,...,Zm with ||z;|] < 1. Choose N € IN such that ||Tz; — Tpz;|| < € for
n > N and for all 1 < j < m. Then, for arbitrary € H with ||z| < 1 it holds
that ||Tx — Tzj|| <e.

Let x € H with ||z|| < 1. Then

[Tz — Tox|| < || Tz — Taj|| + [|Tx; — Toxjl| + || Taz; — Toz|
<etet |PullTz; — Tl < 3¢,

thus | T — T,| < e. [ ]

Remark 9.9: We proved that any T € B(H) may be approximated by a sequence
(Th)new € E(H) in the strong operator topology: Va € H with [|z|] < 1 :
| Tz — Tz|| = 0. But for the norm topology, this approximation only holds for
TeKH): |T,—-T]| —0.
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Theorem 9.10: Let H be a Hilbert space and T € B(H). Then T is compact if and
only if T™ is compact.

Proof: “=7: Let T' € K(H) be given. By , we find a sequence
(T)nen € E(H) with T, — T. Then

1T =Tl = [[Tn = T|| = 0,

hence Ty — T* and T} = (P, T)* =T*P, =T*P, € E(H). does the
job for us now.
<" It holds T** = T, then use the first part. |

Remark 9.11: Let X,Y be Banach spaces, T € K(X,Y). Then T € K(Y', X')
is compact as well. This proves for Banach spaces, since we can
express T* = j~toT' oj.

Example 9.12: (i) If dim H < oo, then K(H) = B(H). In particular it holds
E(C") = K(C") = B(C™) = M,(C).

(i) If H = L*(]0,1]) with k € L%*([0,1] x [0,1]) and K € B(L?*([0,1])) as in
, then K € K(L?([0,1])).

Proof: Let (e,)nen be an orthonormal base of L?([0,1]). Check that

enm(8,t) 1= en(s)em(t)
is an orthonormal base of L?([0,1] x [0,1]). For
Z A mCn,m,
n,m=1

put ky = ngﬂ On.mén,m- Hence |k — k|2 = 0 as N — oco. For Ky, the
integral operator with respect to ky, we have that K — K the integral operator
with respect to k — kn. Hence

1K = Knl[ <k =knll2 — 0,

i.e., Ky — K. Ky has finite rank as

Ex D)6 = [ i@ dt = 3 [ enlentiso

n.m=1 0
N N
=3 e X i)
n=1 m=1
thus Ky f € {(e1,...,e,) for all f. [ |

65



9 Compact operators and their spectral theorem

Theorem 9.13 (Spectral theorem for selfadjoint compact operators): Let H be a
separable Hilbert space and let T € K(T') with T = T*.
(i) If X € 0,(T), XA #0, then the eigenspace ker(A — T') is finite-dimensional.
(i) If N ¢ 0,(T), A #0, then A ¢ Sp(T') and 0,(T) C R.

(iii) The operator T has only countably many mutually different eigenvalues

{1, A2,...}

and the corresponding eigenspaces for \; # 0 are orthogonal to each other
and are finite-dimensional. All eigenvalues are real and

We may decompose
T=> Py
n=1

and call T o diagonal operator.

Proof: (i) Let (e;)iesr be an orthonormal base of ker(A — T'). Then for i # j it
holds
I Te; — Tejl* = Aei — Aejl|* = 2/,

If |I| = oo, then (Te;);cr has no convergent subsequence which is a contradiction
to the compactness.

(if) We need to show, that im(A —7') = H. In this case, A — T is surjective and
injective, hence invertible and A ¢ Sp(T).
(ii.1) It holds op(T) C R.

Proof (of (ii.1)): For A\ € 0,(T) and x # 0 with Tx = Az we have

Mz, z) = (z, \x) = (x,Tz) = (Tz,z) = Qa,x) = Mz, x). [

(ii.2) For a sequence (Tn)new C H with ||z, || and | Tz, — xy|| — 0, £ £ 0, it
holds that & € o, (T).

Proof (of (ii.2)): As T is compact, we can find a subsequence (z,, )ren such that
Tx,, — vy € H as k = oo. Hence: &xp, = Twpn, — (T2, — &2n,) — y and
therefore x,,, — ¢ 1y. But then £y + £(Tx,, ) = T(€xy,) — Ty and y # 0 since
1= ||z, || =€~ {ly|l implies that ||y]| = |¢] # 0. u

(ii.3) It holds im(A —T') = im(\ — T).

1This holds for all compact operators on separable Hilbert spaces.
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Proof (of (ii.3)): By (ii.2) there is ¢ > 0 such that || Tz — x| > c||z|| for all z € H;
use ||z||7tx. Let y € im(\ — T) i.e., we have z,, € H with Az, — Tx, — y. Then

(ii.2) 1
|z —zm| < EHT(xn = Zm) = M@ — )| = 0

Thus (2, )nen is a Cauchy sequence, we thus have x,, — x for some z € H and
Yy Aoy —Tay, > A=T)z €im(A=T). [ |

Finally, we have
im(A —7T) =im(A = T) = ker((A\ = T)*)t =ker(\ = T)* =ker(A\—T)* = H

as A ¢ o,(T).
(iii) (iii.1) There is A1 € o,(T) with Ay € R such that |\ = ||T|.

Proof (of (iii.1)): By sheet 8, we have that ||T|| = sup{|(Tx,x) | ||| = 1}, hence
we find (z,,) C H, ||zn|| = 1 with |[(T'zy, zn)| — [|T]|. We know (T'zy,z,) € R by
(Remark 7.11), hence without loss of generality (T'x,,z,) = A1 := £|T||. Then

(T = A)an|l? = [|[Txn||* = 2M0 (T 2z, 2,) + A3 < A2 = 20 Ty, ) + A2
< 2)\1()\1 — <Tl‘n,l‘n>) — 0

By (ii.2) it holds A € 0, (T). [ |

(iii.2) Put Hy := ker(A — T) and P; the projection onto Hy. Decompose H =
H,® Hf-. Then TH, C Hq, THf- - Hf-, because if x € Hy, then Tx = \x € Hy
and if z € Hi-, then for y € H; it holds (T'z,y) = A\ (z,y) = 0, thus = € Hi".

Hence T = M16 Ty = (M ) € B(Hy @ Hy). Now put Ty := T € K(H{"),
then Ty = T». By (iii.1) we find Ay # A\ such that |[As] < |N\| with Hy =
ker(Ay — To) = ker(Ay — T)).

(iii.3) Inductively we find a sequence (A,)nen € R with A, € 0,(T') for all n with
H,, :=ker(\,—T). The H, are mutually orthogonal as we have for = € ker(\, —T),
y € ker(A, = T'):

/\n<x7y> = <T.13,y> = <$7Ty> = /\m<may>

and thus (x,y) = 0 must hold.
(iii.4) It holds A\, — 0.

Proof (of (iii.4)): As [A1| > |A2| > ..., there is @ > 0 with [A\,| — «a. For z,, € H,
with |||, we find a convergent subsequence of (Tx,)ncn as T is compact. Now it
holds

T 20 = Taml® = [Anzn = Anm[? = Anl® + [Am]? > 202

and thus a = 0. [ |
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9 Compact operators and their spectral theorem

(iii.5) It holds Zﬁlzl AP, — T where P, denotes the projection onto H, =
ker(A, = T).

Proof (of (iii.5)): Let x € H. Then we can decompose
t=xo+z€(H,1® - BHN)S(H, & & Hy)*t

and denote H' := (H, ® ---® Hy)*

N
|(7 = S awp)a]| = Il < 170l < Pl . _
n=1

Of course, for Banach spaces we can’t hope for a perfect analogon of the theorem
for Hilbert spaces, as we don’t have the orthogonal decomposition at hand. However,
there is a generalisation of the spectral theorem of compact operators on Hilbert
spaces:

Theorem 9.14 (Spectral theorem for compact operators on Banach spaces): Let X
be a Banach space, T € K(X). Then the following hold:
(i) Sp(T) has at most countable many elements and 0 is the only cluster point.
If X is infinite-dimensional, then 0 € Sp(T).
(if) If 0 # X\ € Sp(T)), then X € 0,(T) and dim(ker(A —T)) < oo.

(iii) For 0 # X € Sp(T), there is a composition X = N @ F\ (as described in
(Remark 5.19)) such that ker(A\ —T) C Ny, (A = T)|n, is nilpotent and if
0 # p € Sp(T) with A # 1, then N C F),.
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10 Banach- and ('*-algebras and the
Gelfand transformation

Definition 10.1: Let A be a normed C-vector space.

(i) A is called a normed algebra, if A is an algebra such that ||zy| < ||z||||y|| for
all x,y € A.
(ii) A is called a Banach algebra, if A is a complete normed algebra.
(iii) An involution on an algebra is a map *: A — A with
(1) (a+b)* =a* +b*, (A\a)* = Aa* for a,b € A and X € C,
(2) (ab)* = b*a”,
(3) a*™* =a.
(iv) A *-Banach algebra is a Banach algebra with an involution.
(v) A C*-algeba' is a *-Banach algebra such that ||z*z|| = ||z||? for all x € A.
(vi) A(n) algebra / Banach algebra / C*-algebra is called commutative, if it holds
xy = yx for all x,y € A. 1t is called unital, if 1 € A.

(vii) Let A, B be Banach algebras. A map ¢: A — B is called (algebra) ho-
momorphism, if it is linear and multiplicative: ¢(zy) = @(z)p(y) for all
z,y € A.
If A and B are *-Banach algebras and if we have p(a*) = p(a)* for all
a € A, we call ¢ a *-homomorphism.
If ||e(a)|| = |la|l, we call ¢ isometric.

Example 10.2: (i) Let H be a Hilbert space. Then B(H) is a unital C*-algebra
(see ). If H is finite-dimensional, then M, (C) is a unital C*-algebra

via (a; ;)* = (@;4)-
(ii) Let X be a compact topological space, then (C(X), ||:|ls) is a unital com-
mutative C*-algebra via f*(t) := f(¢).

w1 * 99

Remark 10.3: (i) An involution is bijective: =
(ii) If A is a unital *-Banach algebra, then 1* = 1, because it holds

1"z = (2*1)" = 2™ =z.
If A is a unital C*-algebra, then ||1|| = 1, because it holds
[ =11 = 11 - 2] = 1.

Because A # {0}, it holds ||1]] = 1.

1First introduced by Gelfand in 1943.
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10 Banach- and C™*-algebras and the Gelfand transformation

(iii) It holds (z~1)* = (2*)7!, because (z~1)*z* = (zz~1)* = 1.

(iv) It holds Sp(z*) = {\ | A € Sp(z)}, because A — x is invertible if and only if
(A —x)* is invertible.

(v) If A is a C*-algebra, then the involution is isometric, i.e., ||z*| = ||z,
because

1] = lle"zll < [l [lllll = llzll < lz"]| = [l2"] < [la*]| = [|=]
(vi) If A is a unital Banach algebra and x € A, then
r(x) := sup{|A| | A € Sp(a)} < ||«

is the spectral radius of z. We have the formula r(z) = lim, o {/|z"| (see
). If now A is a unital C*-algebra and if  is normal (i.e., ¥z = xz*),
then r(z) = ||z||.

Proof: We have
221> = |(z%)*a?|| = |a* 2 2z = |z*za*z| = ||(z"2)" (z"2)|| = |2*=|]* = ||=[*,

thus ||z = ||z?||. Inductively, we see that ||z2"|| = ||z||*", hence

r(@) = tim /[ = [l =

Definition 10.4: (i) A non-commutative monomial in x1,...,x, is an expression
of the form
k1 ko Ko
Ty Tig =0 Ty,
with k; € IN,4; € {1,...,n}. Note that in general x1x2 # x2x1! A non-
commutative polynomial is a C-linear combination of non-commutative mono-

mials.

(ii) A non-commutative monomial in x and z* is of the form

k1 *’“2xk3 «ka Em

x€X x e s

a non-commutative polynomial in z and x* is defined standing to reason.

Remark 10.5: If = is normal, then any non-commutative monomial is of the form
2k with k,l € Ny (rather than gk ). Also, the algebra of polynomials in
2 and z* is commutative in this case.

Theorem 10.6 (Gelfand-Mazur): If A is a (not necessarily commutative) unital
Banach algebra, which is also a skew field.” Then A = C (as an algebra).

2The german term for skew field is “Schiefkérper”. A skew field is an algebra in which every
element is invertible.
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Proof: Let z € A. Then Sp(z) # @ (refer to ), i.e., we find a A € Sp(z)
and hence A1 — z is not invertible. Then \1 —z =0, i.e., z = Al € C1. |

Definition 10.7: Let A be an algebra. A (two-sided) ideal I # A is called mazimal,
if for every ideal I C J C A it holds, that I = J or J = A.

Proposition 10.8: Let A be a Banach algebra.

(i) If I < A is a closed (two-sided) ideal, then A/I is a Banach algebra.
(i) If I C A is a (not necessarily closed, two-sided) ideal, then also I C A is a
(two-sided) ideal.
(iii) If I C A is a(n) (two-sided) ideal and if A is a unital Banach algebra, then
the following are equivalent:
(1) =4,
(2) 1e1,
(3) INGL(A) #£ 2.
(iv) If A is unital, then every (two-sided) mazimal ideal is closed.

(v) If A is unital, then every non-trivial (two-sided) ideal is contained in a
mazimal ideal.

Proof: (i) Because I C A is a closed linear subspace, we know from

that A/I is a Banach space. It is an algebra via &y = (zy)® (this is well-defined:
If a,b € I, then ((x + a)(y +b))® = (xy + b+ ay + ab)® = (zy)*). And we have
lZg|l < IZ)ll9ll: Indeed, for € > 0, we find a,b € T with ||z +a|| < ||| + ¢, likewise
for ||g]]. Hence:

gl = 11 ((z + a)(y +0)°l| < (@ +a)(y +b)]| < o +allly + 0]
< (12l + &) Ulgll + &)

(ii) If 2 € T, then there is a sequence (z)nen € I such that x,, — x. Then
ax, — az for a € A, thus ax € 1

(iii) f 1 € I, thena =al € IVa € A, thus AC I; If x € I N GL(A) # @, then
l=xz"tel

(iv) Let I C A be maximal. Then I C T C A. Hence [ = I or = A. But as
I # A, we have via (iii), that I C GL(A)°. Because GL(A) is open, I C GL(A)¢,
therefore I # A.

(v) By Zorn’s Lemma we find a maximal element with respect to the ordering
I, C I, containing I. If J, are ideals such that I C J, and 1 ¢ J,, then |J, Jo € A
is again an ideal with 1 ¢ |J,, Ja. [
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10 Banach- and C™*-algebras and the Gelfand transformation

Definition 10.9: Let A be a unital Banach algebra. A homomorphism ¢: A — C,
@ # 0 is called a character of A. We put

Spec(A) := {p: A — C character}
and call Spec(A) the spectrum of A.

Lemma 10.10: Let A be a unital Banach algebra, ¢ € Spec(A).

(i) We have ¢(1) = 1.

(ii) It holds for all a € A: p(a) € Sp(a), and ¢(x) # 0 for all x € GL(A).
(iii) @ s continuous, ||¢|| <1 (with ||| =1 if |1 = 1).
(iv) If A is a unital C*-algebra, then ¢ is a *-homomorphism and ||| = 1.

Proof: (i) Since ¢ # 0 we find x € A such that ¢(z) # 0. Then it holds ¢(x) =
p(zl) = p(x)p(1), thus ¢(1) is the unit element (with respect to multiplication) in
the Banach algebra C, i.e., ¢(1) = 1.

(ii) Let 2 € A be invertible. Then 1 = (1
o(x) # 0. Furthermore it holds ¢(p(a)l —a) =
hence ¢(a) € Sp(a).

(iii) We have that

) = pez™) = p(@)p(z71), thus
0, thus ¢(a)l — a is not invertible,

Sp(4) S {A e C A < lall},

thus |p(a)| < |la|| for all a € A, i.e., @] < 1. If ||1]] = 1, then |o(1)] = ||I1|| = 1,
hence ||| = 1.

(iv) Since ||1|| = 1 holds in unital C*-algebras, we have that ||¢|| = 1. Let now
a, 3,7, € R with
p(r) =a+if,  pa?)=v+id.
We now need to show, that the equalities a = 7, § = —J hold, because then it held

that ¢(2?) = p(x) and ¢ were a *-homomorphism.
Assume 8+ § # 0, then

_r+xt—(a+fp)"
B+9

satisfied ¢(c) =i and for arbitrary A € R we thus found p(c+ Ai) = (1+ A)i, hence
[1 4+ A| < |le + Ai||. Therefore it held that

LH20+ A% = [T+ A2 < |le+ M2
=||(e4+ A)*(c+ Ai)]]
= [[(e = M) (c+ M) = [l + N[ < [le]® + N2,

thus 1+ 2\ < [|c?|| for all A € R, which is a contradiction.
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If we assume o — v # 0 and put

ir 4 (iz)* +2p1
oa—f ’

we may proceed similarly. |

d:=

For z,y € A and ¢ € Spec(A) it holds, that

e(zy) = p(x)e(y) = p(y)p(r) = p(yz),

characters do not “see” the commutativity or non-commutativity of A. Thus,
Spec(A) might not contain much information about A if A is non-commutative —
on Sheet 10 we saw, that Spec(M,,(C)) = @.

However if A is commutative, Spec(A) contains a lot of information of A.

Proposition 10.11: Let A be a commutative unital Banach algebra. Then the map
Spec(A) — { Mazimal ideals in A}
© — ker(p)
is bijective.

Proof: For the surjectivity let I C A be a maximal ideal (i.e., a two-sided ideal).
Then I is closed by (iv) and A/I is a Banach algebra via

(). Also A/I is a skew field: Let w: A — A/I be the quotient map and
let a € A with m(a) # 0. Put

J={bz+z|beAxel} CA
Then J is a two-sided ideal in A, as for (ba + z), (b'a + z') € J and ¢ € A it holds
(ba+z)+ Va+a)=Ob+b)a+ (v +2), c(ba + ) = (cb)a + cz,

the commutativity of J is obvious as A is commutative by precondition. Further-
more it holds 7 C J withb=0and I # J withb=1andx =0;s0a € Jbuta ¢ I
(since m(a) # 0). By the maximality of I, we infer that J = A, thus there are b € A
and z € I such that 1 = ba + =, which implies 7(b)w(a) = 7w(ba + ) = 7(1) =1,
hence 7(a) is invertible and A/ is indeed a skew field. By it holds
that A/I = C and thus

m: A— A/ T=C

is a charakter with ker(r) = I.
For the injectivity let o1, 2 € Spec(A) with ker(p;) = ker(ps). Then for any
a € A it holds that ¢1(a)l — a € ker(¢1) = ker(p2), thus

0= @a(p1(a) —a) = ¢1(a) — @a(a),

which implies @1 = ps.
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10 Banach- and C™*-algebras and the Gelfand transformation

For the well-definedness we check, that for ¢ € Spec(A), ker(y) C A is indeed a
maximal two-sided ideal: For any a € A it holds that

p(ar) = p(a)p(r) =0,

furthermore ker(yp) # A since ¢ # 0 by ¢(1) =1# 0. By (v) and
the surjectivity of the map we find ¢ € Spec(A) with ker(p) C ker(¢)) such that
ker(t)) is maximal. Then for any a € A it holds that ¢(a)l — a € ker(p) C ker (),
i.e.,
0 =1(p(a)l —a) = p(a) — ¢(a)

and thus ¢ = 1. |
Corollary 10.12: Let A be a commutative unital Banach algebra and a € A.

(i) a is invertible if and only if p(a) # 0 for all ¢ € Spec(A),

(i) It holds X € Sp(a) if and only if p(a) = X for some ¢ € Spec(A), hence

Sp(a) = {(a) | ¢ € Spec(A)}.

Proof: (i) “=" was shown in (ii), for “«<=” let a € A\ GL(A).
Then
I:={ba|be A}
is a non-trivial (since 1 ¢ I) two-sided ideal in A and thus I C ker(y) for
some ¢ € Spec(A4), i.e., ¢(a) = 0 (hint: use (v)).

(ii) We have
A € Sp(a) & ¢ € Spec(A) : p(A—a) =0,

i.e., p(a) =\ [ |
Proposition 10.13: Let A be a unital Banach algebra. Then Spec(A) is compact
(with respect to pointwise convergence of characters).

Proof: We just want to give the idea of the proof here.

e By Tychonov’s theorem, every product of compact spaces is compact (Ty-
chonovs theorem is equivalent to the axiom of choice).

e Let E be a normed space and
(B = {reB| |z <1} CE’

the closed unit ball in the dual space of E. Endow (E’); with the locally convex
topology of pointwise convergence

o = @ pr(x) = p(x)Ve € E.

Then (E'); is a closed subset of the product [[,cp {A € C | [\ < 1} which is
compact by Tychonov’s theorem, hence (E’); is compact. For z € (E’); and y € Ey
we then have [z(y)] < llel ] < 1.
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e If now suffices to show that Spec(A4) C (A’); is a closed subset: Let (p)) C
Spec(A) be a net with ¢y — ¢ € (A’); pointwise. Since ¢x(1) =1 for all A, we
have that ¢(1) = 1 and moreover

e(zy) «— oalzy) = ex(@)ealy) — o(x)e(y),
thus ¢ € Spec(A). [ |
Example 10.14: Let X be a compact topological Hausdorff space. Then C(X) is a

commutative unital Banach algebra (even a C*-algebra). What is Spec(C(X))?
Let t € X. Put

or: C(X) —C
fr— F®),
then ¢, € Spec(C(X)) for all ¢t € X. We have:
U: X — Spec(C(X))
t— o
is a homeomorphism, i.e., X = Spec(C(X)) as topological spaces.

e U is continuous: For a net (tx)xea in X with ¢y — ¢, we have

iy (f) = f(ta) = f(t) = we(f)

for all f € C(X), hence ¢, — .

o U is injective: Let s,t € X with s #¢. Find f: X — R continuous such that
f(s) # f(t) (if X is metric, put f(y) := d(s,y), if X not metric, the Lemma of
Urysohn grants the existence of such a function). Then

@s(f) = [f(s) # f(t) = ou(f),

hence ¢ # ;.

e U is surjective: We need to show that for every maximal ideal I C C'(X) there
is t € X such that I = ker(y,). For ¢ € Spec(C(X)) we find ¢t € X such that
ker(p) = ker(y) via (Theorem 10.11). As in the proof of (Theorem 10.11) we thus
have ¢ = ¢.

e U~ is continuous: ¥ is a continuous bijective map between compact Hausdorff
spaces, hence for A C X closed, A is compact. Then

(T~1)7H(A) = B(A) C Spec(C(X))

is compact and thus closed.
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10 Banach- and C™*-algebras and the Gelfand transformation

Theorem 10.15: Let A be a unital Banach algebra. Then, the Gelfand transforma-
tion

x: A — C(Spec(A))
T — &,
where Z(p) := p(x),
(i) ...is a continuous algebra homomorphism,
(ii) If A is commutative, then ||x(z)|lcc = 7(z) and £(Spec(A4)) = Sp(z).
Proof: (i) We have

T4 y(p) = plz +y) = p(@) + p(y) = #(0) + ()
zy(p) = play) = (x)p(y) = 29(p)
as well as
12(0)] = le(@)] < [lz]| V¢,
from which we conclude ||x(z)]lco = |]|0oc < |l2]-
(ii) It holds #(Spec(A)) = {¢(x) | ¢ € Spec(A)} = Sp(x), hence
r(z) = sup{|A| | A € Sp(z)} = sup{|Z(p)| | ¥ € Spec(A)} = [|Z] |

Theorem 10.16: Let A be a commutative unital C*-algebra. Then, the Gelfand
transformation x is even an isometric algebra isomorphism respecting the involution,
i. €., it s an isometric *-isomorphism.

Proof: First, we want to show that x is indeed a *~-homomorphism. By ,
© is a *-homomorphism for all ¢ € Spec(A), hence

7 () = p(a*) = () = & (),
i.e., x is a *~homomorphism.

Secondly, we want to show that y is isometric: Since A is commutative, we have
x*x = xzx* for all x € A. Using the results from and
(ii), it then holds that ||z|| = r(z) = ||x(2)||s, i. €., X is isometric.

Thirdly, we need to show that x is surjective. Therefore consider x(A4) C
C(Spec(A)). x(A) is a *-subalgebra, as for 2,9 € x(A) it holds that 29 = 7y € x(4)
etc.

Fourthly, x(A) separates points, because for ¢, € Spec(A) with ¢ # 1), there

is & € A such that o(z) # ¥(x), thus x(2)(p) = p(z) £ H(z) = X(2)(1).
Finally, x(A) is closed, because if (£, )nen € x(A) is a Cauchy sequence, then

Zn — Zmlloo = IX(Tn — Tm)lloo = [|Zn — Tml| < e

for some n,m > N. Thus (z,)nen € A is a Cauchy sequence, i.e., there is z € A
such that x,, — x. Hence &,, — &. Therefore, x(A) is complete and hence closed.
Now by Stone-Weierstrafi we know that y(A4) = C(Spec(A)). [ |
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Corollary 10.17 (First fundamental theorem of C*-algebras’):

(i) If X is a compact topological space, then C(X) is a commutative unital
C*-algebra,

(ii) If A is a commutative unital C*-algebra, then there is a compact, topological
space X such that A= C(X). In fact X = Spec(A).

Remark 10.18: As stated in , every commutative unital C*-algebra
is of the form C'(X). In some sense topology corresponds to commutative C*-
algebras, hence “non-commutative topology” corresponds to C*-algebras.

This is somehow on of the keys to view C*-algebras. For instance: If X is not
connected, then C'(X) admits a non-trivial projection f € C(X) (f = f? = f,
f#0, f#1). Hence, we might ask: Does a given non-commutative C*-algebra
have non-trivial projections? i.e., Is the associated “non-commutative topological
space” connected? For more on this, see “Elements of non-commutative geometry”
by Varilly, Gracia-Bondia, Figueroa.

Remark 10.19: (i) For Banach algebras, is wrong, in the sense
that y is no isomorphism. On Sheet 10, we showed that ¢1(Z) is a commutative
unital Banach algebra with Spec(¢!(Z)) = T, where T := {z € C | |z| = 1}. The
Gelfand transformation

x: (1(Z) — O(T)
is nothing but the Fourier transform:
X(@)(2) = x(2) () = ¢z () = D an2"
neEZ
with = (apn)nez. Then x is injective, but not surjective.

(ii) Using the Gelfand transformation, we can show the Theorem of Wiener: If
f € £(T) has an absolutely convergent Fourier expansion and if f(z) # 0 for all
z € T, then also !/r has an absolutely convergent Fourier expansion (study the
image of ¢1(Z) under ).

If z € A, we know how to form p(z) € A for a polynomial p. But what about
f(z) € A for a continuous function f, e.g. f = /- 7 Using f € C(Sp(z)) =
C*(x,1) C A, this is a commutative if x is normal.

Definition 10.20: Let A be a unital C*-algebra.
(i) If M C A is a subset, then
C*(M) = N B
BCA C*—subalgebra,MCB

is the smallest C*-subalgebra of A containing M.

3In literature on the topic, this Theorem is also called the “Theorem of Gelfand-Naimark” (where
the spelling of Naimark may vary due to different transliterations of his russian name).
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10 Banach- and C™*-algebras and the Gelfand transformation

(ii) If x € A, then C*(x,1) := C*({z,1}) C A.

Remark 10.21: (i) If A is a unital C*-algebra, then

C*(x,1) = {non-commutative polynomials in z and z*} C A

since {non-commutative polynomials} C A is a C*-subalgebra. This implies that

C*(x,1) C {non-commutative polynomials}

but also

{non-commutative polynomials} C C*(z,1).

(ii) If z is normal, then C*(z, 1) is commutative, since {polynomials in = and z
is commutative. If we use in this case, we get C*(z,1)
C(SpecC*(x,1)), we now want to get a better understanding of C(SpecC*(z, 1)).

*
~

Lemma 10.22: Let A be a unital C*-algebra, x € A normal.

(1) Spa(y) = Spc+(x1)(y) for ally € C*(x,1),
(ii) The map

x(z): Spec(C*(x,1)) — Sp(x)
@ — p(z)

is bijective.

Proof: (i) If A — y is invertible in C*(x,1) (i.e., (A — )"t € C*(z,1)), then
A — y is invertible in A. Let now A — y be invertible in A and consider

B:= C*(xv ()‘ - y)_17 1) c A

Then B is commutative and unital: Indeed z(A — y) = (A — y)z, since C*(z, 1) is
commutative and x, (A — y) € C*(x, 1), thus (A —y)~! = (A — y)~'z. Hence

{polynomials in z,z*, (A —y) ™%, (A —y)~1)*, 1}

is commutative. By , the Gelfand transform xp: B — C(Spec(B))
is thus a *-isomorphism. We need to show that xg(C*(x,1)) C C(Spec(B)) is
a closed *-subalgebra separating points. For the point-separating property: Let
@, € Spec(B) with ¢|c=(z1) = Y]c+(2,1)- Then it holds (A —y) = P(A —y)
which implies ¢((A —y)~!) = ¥((A — y)~1) and thus ¢|p = ¢|p. Via the Theorem
of Stone-Weierstraf}, we see that xp(C*(z,1)) = C(Spec(B)) = xp5(B). Because
X B is injective, it holds that C*(z,1) = B> (A —y) L.
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(ii) We know from (i), that x(z) is surjective. For the injectivity:
Let ¢, € Spec(C*(x,1)) with p(z) = 9 (x). Then

C:={yecC(zx,1) |0y =y} < C(x,1)

is a closed *-subalgebra of A containing {z,1}. Thus C*(z,1) C C, since C*(z, 1)
is the smallest such C*-algebra. Hence C' = C*(x,1). Therefore ¢ = 9. x(z)
is continuous as x(x) € C(Spec(C*(x,1)) and x(x)~! continuous since x(z) is
continuous between compact Hausdorff spaces. |

Theorem 10.23 (Continuous functional calculus): Let A be a unital C*-algebra,
a € A normal. There is a unique isometric *-isomorphism

®: C(Sp(a)) — C*(a,1) C A

such that ®(id) = a and (1) = 1. We write f(a) := D(f).
In particular, if [ is a polynomial in X and X*, then f(a) is the polynomial
applied to a and a*.

Proof: Ezistence: Via , we can identify C(Sp(a)) = C(Spec(C*(a, 1))
and via , we can identify C(Spec(C*(a,1)) = C*(a, 1), thus there is
such ®. We have the diagram

C(Sp(a)) = C(Spec(C™(a, 1)) — C*(a,1)
f—foa a<—a

thus id + id 0 @ = @ — a or alternatively with p(a) = X\: ®71(a)(\) = a(p) =
©(a) = X and thus ®~1(a) = id.

Uniqueness: Let ¥: C*(a,1) — C(Sp(a)) be a *-isomorphism with ¥(a) = id,
¥(1) = 1. Then

C={yeC(a1)| Uy =2"(y)}cA

is a C*-algebra containing {a,1} (as in ). Thus C*(a,1) =C, i.e,
U= |

Proposition 10.24: The functional calculus for x € A normal in a C*-algebra A
has the following properties:

(i) (f+9)(@) = f(z)+g(2), (f9)(x) = f(2)g(z), f(z) = f(x)*V f,g € C(Sp(x)),
(if) Sp(f(z)) = f(Sp(z)) ¥ f € C(Sp(x)),
(iii) If g € C(f(Sp(x)), f € C(Sp(x)), then (g0 f)(z) = g(f(x)),

)

(iv) If x is selfadjoint, then Sp(z) C R and we may decompose x = x4 + x_ with
Sp(z4),5p(z-) € [0,00) and x4z = 0.

Proof: (i) It holds ®(f+g) = ®(f)+P(g), P(fg) = ®(f)P(g) and so on because
® is a * homomorphism.
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10 Banach- and C™*-algebras and the Gelfand transformation

(ii) We have
A ¢ Sp(f(z) & A= fz) = @A - f)

< Al — f is invertible
& f(p) # AVp € Sp(x) & A ¢ f(Sp(z))
(iii) We have the diagram

L _Clspa)

g? @
(¢35}

/\
CEUE) o

o o
I

ey o (f(a)

and put A := {h € C(Sp(f(x)) | a1(h) = az(h)} € C(Sp(f(x))). Then A is a
closed *-subalgebra, separating points (as id € A!). Via the Theorem of Stone-

Weierstraf, it holds that A = C(Sp(f(z))).

(iv) For id € C(Sp(z)), we have ®(id) = ®(id)* = 2* = 2 = ®(id). As ® is
injective, it follows that id = id and thus Sp(z) C R. Wlth

t t>0, —t t<0,
h+(t)¢:{ L {

0 otherwise, otherwise,

\

’1)

we have id = hy —h_. Put ¢y := hy(x) and x_ := h_ [ |

Example 10.25: Let A be a unital C*-algebra, u € A unitary (i.e., u*u = vu* = 1).
Assume that there is A\g € $! with A\g ¢ Sp(u) C $! (where the last inclusion is
to be shown on sheet 11). Then f(z) := arg(z) := 6 for z = €' is continuous on
Sp(u) and real valued. Thus, = := f(u) € A is selfadjoint (via )
we infer: 2* = (f(u))* = f(u) = f(u) = z) and €* = u (since for g(t) := €,
we have g o f = id). Hence, in this case (Sp(u) € $'), we may write u in “polar
coordinates”.

Definition 10.26: Let A be a unital C*-algebra, x € A. =z is called positive, if
x =z* and Sp(x) C [0, 00).

Proposition 10.27: Every positive element in a unital C*-algebra A admits a unique
positive square root, i. e., if x € A is positive, there is exactly one y € A positive
with y? = x. In particular, every positive operator in B(H) has a positive square
T00¢.

Proof: See Exercise sheet 12, exercise 2. |
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11 Spectral theorem for normal
operators on Hilbert spaces

As Motivation for this chapter, we recall the spectral theorem from linear algebra:

Theorem: Let H be a Hilbert space with dim(H) < oo and let A € M, (C) with
A= A*. Then A may be diagonalised, i. e.,

A= Z APy

AESpP(A)

where Sp(A) = op(A) = {\; | 1 <i < n}, Py is the projection onto the eigenspace
ker(A1 — A). We have Py L P, (i.e., PxH L P,H, or equivalently P\P, = 0) if

A# pand H = @yegpa) PaH = Dyegpa) ker(Al — A) and 305 cqpa) Pr = 1,
hence \
1

A=
An

If dim(H) = 0o and A = A* € K(H), we know from , that we may
decompose A = Zz\esp(A) APy, where Py are the projections onto ker(Al — A)
(which are finite-dimensional and non-trivial), Py L P, for p1 # X and Sp(4) C
{eigenvalues of A} U {0}.

Now, what happens if A = A* € B(H) \ K(H)? First of all we face the problem,
that “\ € Sp(A) = X eigenvalue” does not hold, so we cannot simply take the
projections Py onto the eigenspaces.

Our idea:

(i) Write

A= tdE(t),
Sp(A)

where E is a “measure with values in B(H)”, which leads to the notion of Spectral
measures.

(ii) By , we know that C(Sp(4)) = C*(A,1) C B(H) for A
normal, i.e., “the whole information on A is in its spectrum” (in fact “spectral
theorem = diagonalise + whole info is in the spectrum”), which will lead to the
extension of the continuous functional calculus to C(Sp(A)) C By(Sp(A)).

Example 11.1: Let H = L?([0,1]) and

A-H—H
t—tf(t), f € H
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11 Spectral theorem for normal operators on Hilbert spaces

Then A = A*, as

(g, Af) = / o) dt = / t(H)F (@) dt = (Ag, f),

[Al <1, as
1 1
A 2 _ 2d 2d _ 2
[ AfIl /Oltf(t)| tS/O |F@)]"dt = || f]]

and Sp(A4) = [0,1] (as in (Example 8.6)), but 0,(A4) = @ (no eigenvalues). Hence
“A =>"AP\” does not make sense.

If A C R is a small interval around A\ € Sp(A), then we have Af ~ Af, if
flae = 0. Consider the orthogonal projection

E(A): H— Ha
fr—fla
and put Ha :={f € H | f|ac = 0 almost surely} C H. Then E(A) behaves like a
measure: For example we have
o If Al n AQ = @, then E(Al)E(AQ) = 0,
o If A = Al L Ag, then E(A) = E(Al) + E(AQ),
o If J_; A; =1[0,1], then Y1 | E(A;) =1,
o If [ Ay =1[0,1], then Af =30 | AE(A)f = >  Nif-

Hence A ~ [ AdE()). How do we get such a “spectral measure” E?7 Let f = xa
be the characteristic function of A, i.e.,

() = 1 teA,
Xals) = 0 otherwise.

Then xa(A) = [ xa(t) dE(X) = E(A). Hence, we may define E(A) := ya(A), as
soon as we are allowed to use functional calculus with measurable functions (it is
clear that x4 = xa = Xa, hence E(A) would then be a projection).

We want an extension

By(Sp(z)) —— W*(z,1) € B(H)

.

C(Sp(z)) C*(z,1)

Definition 11.2: (i) Let X be a set and let (fn)new € {f: X — C}. (fo)nen
converges bounded pointwise to f: X — C, if

(1) fu(z) = f(x) for all xz € X,
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(2) There is C' > 0 such that for all n € IN it holds that |f,(x)| < C for all
z e X.

(ii) Let X be a compact metric space. Put
By(X) :={f: X — C bounded, Borel measurable functions}.

(iii) Let H be a Hilbert space, (xx)xea € B(H), x € B(H). We say (zx)xea
converges weakly to x (z) - x) if it holds

<$)\§7V> — <$§777>V§777 € H.

—_— W

(iv) We call W*(z,1) := C*(z,1) C B(H) for x € B(H) the weak closure (with
respect to (iii)).

Remark 11.3: (i) The convergence x) — z is given by the locally convex toplogy
(Cen)emer, where (e p(x) == [(x€,n)|. It is called the “weak operator topology”.
We have

Il w
Ty —>T =>T) —T
as
[((@x —2)&,m)| < [lex — [[[[€]l[In]] — 0,

thus C*(x,1) C W*(z,1) C B(H) is still a C*-algebra (||-||-closed *-subalgebra).
In fact W*(z,1) is a von Neumann algebra. von Neumann algebras correspond to
non-commutative measure theory as C*-algebras correspond to non-commutative
topology.

(ii) In the weak operator topology, the multiplication is not continuous, but we

w w . . . .
have “xy — = = x)\y — zy”. However, the involution is continuous.

Lemma 11.4: Let X be a compact metric space. Then By(X) form the smallest set
MC{f: X —C}

(i) containing C(X),

(ii) closed under bounded pointwise convergence.

Proof: (D It holds C(X) C By(X), and By(X) is closed under pointwise conver-
gence.

Proof (of M): Any f € C(X) is measurable and bounded, since X is compact. For
a sequence (fy)nen, the pointwise limit lim,, . fn(t) =: f(t) is measurable and
bounded. |

@ Let M be the smallest set with (i) and (ii). Then M is a vector space.
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11 Spectral theorem for normal operators on Hilbert spaces

Proof (of @): Put My :={g9: X - C | f+g € M} for f: X — C. Then M;
satisfies (i) and (ii), if f € C(X). Hence M C My, thus f + M C M for all
f € C(X). This implies that C(X) + M C M and therefore M satisfies (i) and
(ii) for all f € M. It thus holds M C M; and hence M + M C M. Likewise
AM C M. [ ]

® For all f,g € M it holds that max{f,g} € M.

Proof (of @): The set M’ := {h: X — C | |h| € M} satisfies (i) and (ii), thus
M C M'. We now have

f+g+1f—4g|

max{f, g} = 2 s

thus for f,g € M it holds that max{f,g} € M. [ |

@ 6:={AC X |xa € M} is ao-algebra containing all open sets U C X.

Proof (of @): That &, X € & is clear. Furthermore we have that x4c =1 — x4 € M,
Xur_, A, = max{xa,,...xa,} € M and xu,.na, € M via (ii). [ |

® It holds By(A\) C M.

Proof (of ®): Let f € B,(X). There are elementary functions M 3 g = Y1 | ai x4,
approximating f in the sense of (ii). |

We thus can understand By (X) = C’(X)(b).

Theorem 11.5 (“Measurable functional calculus”): Let x € B(H) be normal. The
Sfunctional calculus

®: C(Sp(z)) — C*(x,1) C B(H)
admits a unique extension

o': By(Sp(x)) —s W*(x,1) = C(z, 1) C B(H)

such that ®' is a *-homomorphism with ||®" ()| < ||f|le and
“ fu — f bounded pointwise = ®'(f,) = ®'(f)”
Again, we write f(z) := ®'(f) for all f € Bp(Sp(x)).

The idea of the proof is to extend (®(f)&,n), but use (®(f)E, ) instead in order
to apply Theorem of Fischer-Riesz: (®(f)&,n) = [ fdu. This integral we then
want to extend to f € By, and get back “(®'(f)¢,n)” using the polarisation identity.
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Proof: Let for the uniqueness ¥ be another *-homomorphism like ® (so, it extends
®, is a *-homomorphism, ||¥|| <1 and is continuous with respect to the bounded /
pointwise topology). Then by

By(Sp(x)) € M :={f € By(Sp(x)) | (®'(£)&,m) = (®(f)§,m) V& n € HY,

and as M C By(Sp(x)), ® = ¥ as desired.
For the existence let £ € H. Put A¢: C(Sp(z)) — C via

Ae(f) = (f(2)&,6),

then A is positive, linear and continuous. By the Theorem of Fischer-Riesz, there
is a measure u such that for all f € C(Sp(x)):

Now put

then Af is a positive, linear, continuous extension of A with \Aé(f)| < £ lloo 1]
For f € By(Sp(x)) and &, € H, put

3
By m) = § 3D, ().
k=0

This By then is a sesquilinear form on H. For f € C(Sp(x)), By has the properties
By(€,8) = (f(@)€.8),  [Br(&ml < [ fllclIEllInll-

Indeed, for the first property:

By(£,8) = iF(f(2) (€ +1i%¢), € +1%¢)

> =
>

w HM“
=)

A+ +iF)(f(2)€,6) = (f(2)€,€),

0

> =

k

and

1B (&, m)| = [{(f(@)& ) < [ F@)ENEN < 1F@NIEN < N flloolIEll-
Then, for the second property, we get |Bf(£,n)|? < |Bf(&,€)||Bf(n,n)|.
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11 Spectral theorem for normal operators on Hilbert spaces

As By is a sesquilinear form, £ — By(€,n) (for fixed n € H) is a linear functional
on H and thus by , there is (;, € H such that By(§,n) = (£, ().
Now, put T, := ¢,. Then T' € B(H). Finally, we put ®(f) := T*. Then we have
1S (I =T = T < [1flloc, as

1Tl = [I<all = llfe, || = sup [(§,¢o)l = sup [(By(& )] < I lloollnll
=1 leli=1

Hence, for f € C(Sp(z)) it holds that
(f(2)&,€) = Ae(f) = AL(f) = By(§,€) = (§,¢e) = (§,T€) = (T7€,8) = (P'(f)€.€)
thus @' is an extension of ®. We check that @’ is a w-continuous *-homomorphism.Hl

Corollary 11.6 (Weak spectral theorem): If z = z* € B(H) (or normal), then x
may be approzimated in ||| by diagonal operators.

Proof: There are numers a,b € R such that Sp(z) C [a,b]. Let ¢ > 0 and let
a=1ty <ty <---<tp_1 <t,=Dbbe a partition of [a,d], such that maxj<;<n|t; —

ti_1| < e. Then
n
idjgp) — Y tic1x
i—1

Put E; := x|(,_,.t;)(z). Then the E; are projections and

n
Hl‘ - Zti—lEi
i=1

<e

oo

(ti—1,tq]

<eE.
o |

<

n
id[q,b)nSp(z) — Z Lim1X(ti_1,t:]NSp (@)
=1

Definition 11.7: Let H be a Hilbert space and let (Y, M) be a measurable space.
A map

E: M — {projections in B(H)}
is called a spectral measure, if

(i) E(2)=0,
(i) BY) =1,
(iii) E(U;en Mi) = > ;e E(M;) for all M; € M mutually disjoint.

Lemma 11.8: Let £ € H. Then

pe: M — [0, 00)
Ar— (E(A),€)

1S a measure.
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Theorem 11.9: Let x € B(H) be normal. Then E: {Borel sets in Sp(x)} — B(H)
defined by
E(A) == xal(x)

is a spectral measure with:

(i) If€ € H s an eigenvector to the eigenvalue A € C, then for all f € By(Sp(x)):
f(@)§ = fNE,

(ii) E({\}) is the orthogonal projection onto the eigenspace corresponding to
A e C. X e C is an eigenvalue if and only if E({\}) # 0.

(iii) If A € Sp(x) is isolated, then A is an eigenvalue.

Proof: It holds xg(z) =0, Xsp(z)(2) =1 and Y7 1 Xm, = Xu,enM; PoOintwise and
bounded, thus

n

STEM;) 5 CEM), > X () — Xusenis, (@ E(U )

i=1 =1 i=1 i€IN

(i) The formula is true for monomials in & and z*, hence for polynomials, hence

for f € C(Sp(x)), as

o L F o f(@)E e pu(@)€ = pa(N)E — FNE

and then also for f € By(Sp(z)) by
(ii) It holds

rE({A})€ = idgp @) () x 1 (2)€ = (dsp@)xa3) (@) = Axpay ()6 = AE({A})

thus E({\})H C Eig,, if X is an eigenvalue.
Conversely for all £ € Eig, it holds that xx(7)§ = xqa1(A)E, thus by (i)
Eigy, € EQANH

(iif) If A € Sp(x) is isolated, then the function

1 t=A
0= {o ¢ e Sp(a)\ ()

is continuous, hence ||[E({A})|| = ||f(z)|| = || flloo # 0 and thus E({A}) # 0. |

Corollary 11.10 (Spectral theorem): Let x € B(H) be normal and E be the spectral
measure from . Put

/ f(t)dE(t) == z € B(H)
Sp(z)
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11 Spectral theorem for normal operators on Hilbert spaces

where z is an operator given by (z€,£) : fSp 2) f(t) dpe(t) and

e : {Borel sets on Sp(z)} — [0, 00)
Ar— <E(A)€v §>

is the measure from . Then z = [ (@) tdE( fSp @) f@)dE(t)
for all f € By(Sp(z)) and

By(Sp(x)) — B(H)

fr— /de

is a *-homomorphism.
Proof: For f(z) = ®'(f) we have (refer to the proof of ) for f €
C(Sp(x))

()66 = 8e() = [ Fau
and

(B(A)E, €) = / X dyi = ()
 from the proof D= fle. [ |

Example 11.11: Let H = L*(]0,1]) and

A:H— H
fr—idf.
Then
E: {Borelsets in [0,1]} = B([0,1]) — B(H)
B+ E(B)
with E(B)f = xg(A)f = f|p defines the spectral measure from LIt
holds

1 (B) = (E(B), f) = / X (t) F(EF(E) di = /B () dt,

i.e., py is gives as the Lebesgue-measure with density ¢ — | f(¢)|>. We thus have

<</oltdE(t)> f’f> N /Sp(A) tdus(t) = /Oltlf(t)th

1
_ /O (ANOF@) dt = (Af, ),

which shows A = [tdE(t)
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12 Unbounded operators

In , we have seen that each linear operator A: H — H is bounded
(i.e., continuous) if dim(H) < oco. If dim(H) = oo, this is not true anymore
(although constructing “Examples” is a bit tricky). The theory of unbounded
(linear) operators deals with such situations, is however not complementary to the
theory of bounded operators but rather a vast generalisation thereof. In fact it also
captures many interesting operators, such as differential operators and observables
in quantum mechanics, that even fail to be defined on all of H. Developing this
general frame is the goal of this chapter.

Example 12.1: Consider the complex Hilbert space
H=IL*R)= {f: R — C measurable : / lF(O))?d) < oo} JN.
R

On the subspace D(Q) := {f € L*(R) | [ t*|f(t)|* d\ < oo} we may define the
position operator

Q:H>DQ —H
fr—idf.
This linear operator fails to be bounded since f,, := X[n,n+1) € D(Q) satisfies
n+1

112 = /R X (D2 dA = / L= 1,

but

n+1
1QfII5 = / X1y (1) dX = / 2dt > n? 7% 0.
R

Similarly, the momentum operator
P:H>DP)—H
t—if'(t)

is only defined on D(P) := {f € C*(R) N L?(R) | f' € L*(R)} and fails to be
bounded since

fai R—C

n\ 1 ( nt2)
t— (7) exp | ———
T 2

satisfies || fll2 = 1, but |Pf,|l2 = $v2n — oo as n — oc.
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12 Unbounded operators

Definition 12.2: Let H be a Hilbert space.
(i) An (unbounded) operator T on H is given by a linear map T': D(T) — H,
where D(T') C H is a linear subspace, called the domain of T
(ii) If D(T) = H, we say that T is densely defined.
(iii) G(T) :=={(z,Tz) |z € D(T)} C H x H is called the graph of T.

(iv) An operator S is called an extension of T (T C S) if D(T) C D(S) and
Tz = Sz for all x € D(T) or equivalently, if G(T) C G(S5).

(v) T is called closed, if G(T) is closed in H x H.

(vi) T is called closeable, if T admits an extension S such that S is closed.

Remark 12.3: (i) If H, K are Hilbert spaces, then H x K becomes a Hilbert
space (H @ K) with the inner product

(@1,91) (22, y2)) = (21, 22) 1 + (Y1, Y2) K-

Clearly a sequence (Zy, Yn)nen in H X K converges to (x,y), i.e., (Tn, yn) = (z,v),
if and only if x,, — x and y,, — y. Thus, an operator T on H is closed if and only
if it holds:

“(xn € D(T), 2y >z € Hand Tz, »y€ H) = (x € D(T) and Tz = y)”,
see . If T is closed and D(T') = H, then T is continuous by the closed
graph theorem .

(ii) A linear subspace G C H @ H is the graph of an operator if and only if
G N ({0} x H) = {(0,0)}.

Proof: “=": If G = G(T) for some operator T, then (z,y) € GN({0} x H) satisfies
z =0 and thus y = Tx = 0.

“<” Put D(T):={x€ H| Jy € H: (z,y) € G} and define T: D(T) — H by
Tx :=y for each x € D(T'), where y € H is chosen such that (z,y) € G. This is
well-defined: If there are points (z,41), (z,y2) € G, then (0,y1 —y2) € GN({0} x H),
thus y1 —y2 =0, i.e., y1 = yo. |

(iii) For an operator T': D(T) — H, the following statements are equivalent:
(1) T is closeable,
(2) The separating space of T, that is given by

S(T):={ye H| I(@n)nen € D(T) : 2, = 0, Tz, = y},

is {0},
(3) G(T) N ({0} x H) = {(0,0)}.
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Proof: “(1) = (2)”: Let S with T'C S be closed. Take y € S(T') and let (zp)nen
be a sequence in D(T) with z,, — 0 and Tz, — y. Since T' C 5, we have that
(Xn, Txy) € G(T) C G(S) and thus, since G(S) is closed, (2,,Tx,) — (0,y) €
G(S),i.e,y=0.

“(2) = (3)”: If (0,y) € G(T) is given, we find (2, )nen in D(T) such that
(xn, Txy) — (0,y),i.e., z, — 0and Tz, — y. Thus y € &(T') = {0} and therefore
y=0.
~ “(3) = (1)™: If (3) holds, then (ii) yields that G(T') is the graph of some operator
T on H which is thus closed. Moreover T' C T since G(T') C G(T') = G(T), hence
T is closeable (Note, that D(T) = D(T)H.”T, where the graph norm ||-||r is given
by llo]- = [l + [ Tz]?). -

(iv) If T: D(T) — H is closeable, there is a unique minimal closed extension T
of T called the closure of T. We have that G(T) = G(T).

Proof: The existence of a closed extension T of T with the property G(T) = G(T)
was established in the proof of “(3) = (1)” in part (iii). Now, if S D T is any
other closed extension of T, we have G(T) = G(T) C G(S) = G(S) because S is
an extension of T' and S is closed, and hence 7' C S. This shows the minimality of
T and thus the uniqueness. |

(v) Let T': D(T) — H be closeable. A subspace D C D(T) is called a core for
T,ifT|p=T.

(vi) If T: D(T) — H is injective we may consider T~: D(T~!) — H, where
D(T') := im(T). Then T is closed if and only if T~ is closed (Note that
U:H®oH— H®H,(z,y) — (y,x) is an isometric isomorphism).

(vii) In general, the composition of closed operators (with suitable domains) is
not closed. There are even examples of continuous linear operators S and closed
linar operators T for which ST is not closed. Remarkably, T'S is under these
conditions, with suitable domain, always closed.

What about existence of adjoint operators? Even in the case of bounded operators,
some work had to be done for that purpose; see (Proposition 7.4).

Theorem 12.4: Let T: D(T) — H be densely defined.

(i) Put D(T*) :={y € H | x — (Tx,y) is continuous on D(T)}. Then D(T™*)
s a linear subspace of H.

(ii) For each y € D(T*) there is a unique element T*y € H such that for all
x € D(T) holds:

(Ta,y) = (2, T"y).

The induced operator T*: D(T*) — H,y — T*y is linear.
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12 Unbounded operators

(iii) G(T™) is closed, i. e., T* is a closed operator. More precisely: We have
« i
G(T*) = V(G(T)*") = (V(G(T)))

for a unitary operator V: H® H — H & H, (z,y) — (y, —x) which sataisfies
V2 = —id. We have

HoH=V(GT) o G(T)

and ker(T*) = im(T)*.
(iv) If T is closed, then D(T*) C H is dense. Then T** := (T*)* =T.
(v) D(T*) C H is dense if and only if T is closeable. If T is closeable, then

T =T+
(vi) If T C S, then S* C T*.

Proof: (i) Define f,: D(T) — C,z — (Tz,y) for y € H. Since for any x € D(T)
and y,z € D(T*) it holds that

fky-‘ruz(x) = Xfy(x) +af- (x)v

we know that Ay + uz € D(T*) for all A\, € C.

(ii) Take y € D(T*). Since f, is continuous and thus bounded, there is C' > 0
so that |fy(x)| < C||z|| for all z € D(T). By , fy admits a continuous

and linear extension f;: H = D(T) — H. By , we may thus find
z € H such that for all z € H holds:

Then we have for all z € D(T)

(Tz,y) = fy(z) = f(x) = (z,2).

Suppose that there were zy, 2o € H satsifying (z,z1) = (Tz,y) = (x, z2) for all
x € D(T'). Then by the properties of the inner product, we had for all x € D(T')

<x,21 - ZQ> = 07

and since D(T) = H, it followed that z; — 29 =0, i.e., 21 = 22. Thus, we may put
T*y := z; checking that T™ is linear is then straight forward.

(iii) We have that V*(z,y) = (—y, z) since

(V(21,92), (x2,y2)) = ((y1, 1), (T2, 92))
= <y1,$2> - <$1»y2> = ((xlayl)7 (—92,»’52))-
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Thus V*V = 1= VV*, ie., V is a unitary operator; V2 = —id is clear. Further-
more:
(r,y) e G(T*) & 2 € D(TY),y e T"x
< (Tz,x) = {(z,y)Vz € D(T)
< 0={(2,T%),(-y,z))Vze D(T)
< 0=(V(2,Tz2),(z,y))Vz € D(T)
& (z,y) LV(G(T)), Le, (z,y) € (V(G(T)))™ .
Thus G(T*) = (V(G(T)))* = V(G(T)*), where the last equality holds because V

is a unitary operator. Since (V(G(T)))* is closed (see ), we see that
G(T™*) is closed. By , we have

H o H = V(GD) & (V(GT)* = V(@) o GT).

As in the proof of one shows that ker(7T*) = im(T)> .

(iv) Let T be closed. Since V is a unitary operator that satisfies V2 = —id, (iii)
yields that
Ho H=GT) o V(G(T)),

i.e., G(T) = (V(G(T*))*. Take z € D(T*)*. We want to show that z = 0. Since
for all y € D(T™) holds that

<(07 Z)7 V(y7T*y)> = <(O7 Z)a (T*yv 7y)> = 7<Zvy> =0,

we see that (0, ) € (V(G(T*)))* = G(T), hence z = T(0) = 0. Thus D(T*)* =0,
i.e., D(T*) = H. We may apply (iii) to T*, which yields (since T* is closed)

Hao H=V(G(T) & GT),

thus G(T**) = (V(G(T*)))* = G(T), i.e., T** =T.
The remaining statements (v) and (vi) are shown similarly. [ |

Remark 12.5: Let T' € B(H) be normal and let E be its spectral measure. The
Borel functional calculus

By(Sp(T)) — W*(T,1) € B(H)
fr— f(t)dE(t)

Sp(T)
admits an extension to B(Sp(T')) with values being unbounded operators: If

f € B(Sp(T)) is given, then

D= {er; F(0)]? dpaa (2) <oo}

Sp(T)
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12 Unbounded operators

with the measure p, given by p.(A) = (E(A)z,x) is a dense subspace of H; there
is a unique operator f(7') on H with D(f(T")) = Dy, that satisfies

(T, z) = / F(8) dpa (8)

Sp(T)

for all z € Dy; see also ( ). We write
@)= [ reae).
Sp(T)

Example 12.6: The momentum operator (see )

Q: L*(R) 2 D(Q) — L*(R)
f—idf

on D(Q) :={f € L*(R) | [Rltf(t)|*dt < oo} is densely defined. Indeed: For all
f € L*(R) it holds that fx_n,n] € D(Q). By , the adjoint operator
Q" exists. How does it look like? We have

g€ D(Q") < f— (Qf,g) (continuous on D(Q))
& 3C>0v7eD(Q): | [ fH | = 1Qs.0) <l
& (ttg(t) € LA(R) & g € D(Q)

and Q*g = Qg, since for all f € D(Q) holds

(QF.9) / F(t)tg() dt = (f, Qg).
R
thus Q* = Q.

Definition 12.7: Let T': D(T) — H be a densely defined operator.

(i) T is called symmetric, it T C T*,
(ii) T is called self-adjoint, it T = T*,

(iii) T is called mazimally symmetric, if T is symmetric and if there is a symmetric
operator T'C S, then T' = S.

For such operators (self-adjoint or symmetric), we hope for a “nice” theory like
in the bounded case.

Remark 12.8: (i) If T is symmetric, then for all x,y € D(T) it holds that

<Tx’y> = <$,Ty>

94



(ii) Selfadjoint operators are closed by (iii). Symmetric operators
might not be closed, but they are always closeable (T' C T*, T* is closed).

(iii) Selfadjoint operators are maximally symmetric (If there are operators T =
T*and S C S*, then T C S=S58*CT*=TC S C S* holds and thus T = 95).
The converse is not true.

Definition 12.9: Let T be an operator on H. Then
Res(T) :={Ae€ C|A\—T: D(T) — H invertible}
is called the Resolvent set and Sp(T') := C \ Res(T) is called the spectrum of T.
Lemma 12.10: Let T be symmetric. Then we have the following statements:
(i) || Tz +iz||? = |Tz|?* + ||z||? = | Tz — iz||? for all x € D(T),

(ii) T is closed if and only if im(T +1) is closed which holds if and only if im(T —1)
is closed,

(iii) T +1i, T —1 are injective,
(iv) If T is also closed, then im(\ — T) is closed and A — T is injective for all
A€ C\R,

(v) Ifim(T +1) = H orim(T —1i) = H, then T is mazimally symmetric.
Proof: (i) It holds that

|Tx +iz|? = (T2, Tx) + (Tx,ix) + (iz, Tx) + (iz,iz)
= |T2|® - i(Tz, x) +i{Tz, z) + ||z||* = || Tz | + |||,

(ii) The map

G(T) — im(T +1)
(,Tz) — (T +1i)x

is surjective and it is isometric since
I, T2)||? = |l«||* + | T2|* = |(T +1)z]*.

Then G(T) is closed if and only if im(7T" + 1) is closed:
In general, let
Hi DK~ LCH,

be surjective and isometric. If L is closed, then K is closed, since for a sequence
(Zn)new C K with @, — x € Hy, it holds that L 3 a(z,) — a(z). As L is closed,
a(z) € L holds and thus = a1 (a(r)) € K. If K is closed, then L is closed, as for
a sequence (y,) C L with y,, — y € Hs, the sequence (x,,) C K with a(x,) =y,
is a Cauchy sequence due to the isometric property of a. Because K is closed,
() = x € K, hence lim,,_,oc a(x,) = a(x) =y € L and therefore, L is closed as
well.
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12 Unbounded operators

(iii) If (T'+ 1)z = 0, then by (i), = 0. Thus, T +1 is injective.

(iv) Let T be closed and symmetric. Let A = a +ib € C with b # 0. Let
x € D(T). Then
IX = T)al|* > 6%,

indeed:

I3 = D)z ||* = (AP l2]* = Ma, Tx) = MTw, ) + || Tz
— (@ + )] — 202, T) + | T
= b*|l2[|* + [l(a — T)al|* > b%|x]|*.
Hence A — T is injective: If (A —T")z = 0, then x = 0, and im(\ — T') is closed: If

(A=T)x, =y, then (A = T)z,,) is a Cauchy-sequence and thus (z,) is a Cauchy
sequence. Therefore there is © € D(T') with x,, = 2 and (A — T)zx,, — (A — T)z.

(v) Let T C S. Then T 4+1i C S +1i, but then S +1i is not injective (as T +1 is
surjective). By (iii), S cannot be symmetric. [ |

Proposition 12.11: Let T be closed and symmetric. Then the following are equiva-
lent:

(i) T is selfadjoint,
(ii) i and —i are no eigenvalues of T* (i.e., ker(T* £1i) = {0} ),
(iii) im(T +1i) =im(T —1i) = H.

Proof: “(i) = (ii)”: Let (T* — M)z =0 for some A € C\ R (for instance, A\ = =+i).
Then

Mz, z) = (A\v,z) = (T*x,2) = (2, Tz) = (v, T*z) = (v, \v) = XMz, z),

Since A # 0, we infer (z,z) = 0 and thus z = 0.
“(ii) < (iii)”: We have the equialities

ker(T* +1) = {0} & im(T —i)* =0 (Theorem 12.4 (iii))
s im(T—-i)=H (Lemma 12.10 (ii)).

“(iif) = (1)”: We have T' C T*. We need to show, that D(T*) C D(T).
Let = € D(T ). Since im(T — i) = H, we find y € D(T) = D(T — i) such
that (T' — i)y = (T —i)z. Since y € D(T) C D(T*) = D(T* —1i), we have
(T — 1)y = (T —1)y = (T* — i)z (because ' C T*). Since T* — i is injective by
(i), this imlies x = y € D(T)). [ |

Lemma 12.12: If T is closed, then (A—T)~! € B(H) for all A\ € Res(T). Moreover
Sp(T) C C is closed.
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Proof: A\ —T is closed, since for D(A—T) D (z,) with ,, —» z and (A —T)z,, — v,
we have z,, € D(T) and hence x € D(T), since T is closed. Therefore we have
xeDA-T)and y + A—T)x, = Axy, —Tx,, = Iz —Tx = (A\—T)z, now apply
(iif).
Because A — T is closed, G(A — T is closed and

G(A=1)"") ={(y,2) | (,y) € GO =T)}

is closed as well. Hence, (A — 7)™ is closed.

D((A—=T)™') = H: For A € Res(T), we have that (A —T): D(T) — H is
invertible, thus (A —T)~!': H — D(T) is bounded via .

Let A € Res(T) and p € C with [\ — u| < [|[(A = T)7Y|~. Then

p=T=((n=2A-T)""+1)(A-T)
where ((41—A)(A—T)~! +1) is bounded and invertible by yas [|[1—[(p
)

NO-T) 1] = Pl [(A-T)~]| < 1, thus s € Res(T) and B, [(A-T)1
Res(T'). Therefore, Res(T') is open and Sp(T') C C is closed.

minN |

Remark 12.13: Sp(T') is not compact in general. For instance Sp(Q) = R, where
Q is the ... operator from

Proposition 12.14: (i) If T is selfadjoint, then Sp(T) C R.
(ii) If T is closed and symmetric and Sp(T) C R, then T is selfadjoint.

Proof: (i) Let A€ C\R. As T =T*, T is closed by (iii). By
(iv), we know that A — T, X — T are injective, im(\ — T') is closed.
We thus know that im(A — T)t = ker(XA — T') = {0} and therefore im(A — T) =
im(A—T) = H. We conclude, that A — T is injective and surjective, hence
A ¢ Sp(T).
(ii) If Sp(T) C R, then +i ¢ Sp(7T), thus im(T' +1i) = H. By
it now holds that T' = T™. [

Remark 12.15: Let T be closed and symmetric, but 7' # T*. Then Sp(T) € R
and i € Sp(T') or —i € Sp(T') (since if +i ¢ Sp(T), it held that im(7 £i) = H and
thus T' was selfadjoint in ths case). One can show that ker(\ — T*) has constant
dimension for all A € Cy := {z € C | Im(z) > 0}, likewise for C_. Hence if
i € Sp(T'), then C, C Sp(T) and if —i € Sp(T'), then C_ C Sp(T'). Thus, there
are only four possiblities for T" closed and symmetric:

(i) Sp(T) =C4+UR (i €Sp(T), =i ¢ Sp(T)),
(ii) Sp(T") =C-UR (i ¢ Sp(T), —i € Sp(T)),
(il) Sp(T) =C (i € Sp(T),—i € Sp(T)),
(iv) Sp(T) C R (e, T=T%).
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12 Unbounded operators

Therefore whether or not T is selfadjoint depends on 7'+ i. In any case, T +1i is
injective (by ) and im(7T" £1i) is closed. The question whether or not
+i € Sp(T) amounts to the question, whether im(T +1i) = H.

Definition 12.16: Let T be closed and symmetric. We define
ny (T) := dim(im(T +1)*) € [0, o0}, n_(T) := dim(im(T — i)*) € [0, oc]
and call ny (T') the defect indices.

Corollary 12.17: Let T be closed and symmetric. Then T is selfadjoint if and only
ifne=n_=0.

We already showed this statement in

Remark 12.18: For bounded selfadjoint operators, we have a spectral theorem.
How about for unbounded selfadjoint operators? One of the occuring problems is,
that Sp(7") € R might be unbounded. Let’s make the spectrum compact: Consider
the mapping

a: R — $'\ {1}
t—1

t— -
t+1

« is bijective and has the inverse map

8:81' —R
1+ =z

zrH—>1
1—2

(check that |t —i/t +1i| = |t + 1/t +i] = 1 and that a(0) = -1, a(1) = —i).

Definition 12.19: Let T be closed and symmetric. Define D(U) :=im(T +1i). The
Cayley-transform of T then is

U:=(T—1)(T+i)"":im(T +1i) — im(T — ).

Remark 12.20: By , im(T £1) is closed and T %1 is injective. Hence
U is well-defined.

Theorem 12.21: Let T be closed and symmetric and U be its Cayley-transform.

(i) U is an isometry, U is closed,

(i) im(1 = U) = D(T),

(iii) 1 = U: D(U) — D(U) is injective,
) T

(iv =i(1+U)1-0U)"1,
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(v) U € B(H) is unitary if and only if T is selfadjoint.
Proof: (i) Let y = (T'+1i)x € im(T + i) with x € D(T'). Then Uy = (T —i)z.
Now, by , we know that
1Ty = (T = i)z|® = (T +D)z|* = [ly]*
Since im(T — i) = im(U) is closed, U is closed by .
(ii) Let y = (T +1i)z € D(U) = im(T +1) with « € D(T). Then
1-U)y=T+i)x— (T —1i)x=2iz € D(T),

thus im(1 — U) = D(T).

(iii) If (1 — U)y = 0, then 2iz = 0, thus £ = 0 which implies y = 0 (again:
y= (T +1i)x).

(iv) Similarly we see that (1+U)((T +1)x) = 2Tx. Hence for x € D(T') we have

1
2i

2i

u1+Ux1U)1<m§>u1+Ux1U)1< (1UxT+nx>

:%@+UXT+Ux:Tx

(v) If T is selfadjoint, by it holds that D(U) = im(T' +i) = H
and im(U) = im(T —i) = H. Hence U: H — H is isometric and surjective and
therefore unitary.

Conversely, if U is unitary, then it holds im(7" 4+ i) = D(U) = H respectively
im(T —1i) = im(U) = H and thus by , T is selfadjoint. |

Remark 12.22: Let V be a closed isometric operator on H such that 1 — V is
injective. Then V is the Cayley-transform of a closed symmetric operator defined
as in (iv).

Theorem 12.23: Let T be closed and symmetric. Then we have

(i) T is selfadjoint if and only if ny =n_ =0,
(ii) T is mazimally symmetric if and only if ny =0 orn_ =0,

(iii) T has a selfadjoint extension if and only if n. =n_.

Proof: (i) is the statement from . As for (ii) and (iii): Let S be
closed and symmetric and let 7" C S. Furthermore let V be the Cayley-transform
of S. Then U C V. Hence, if n. =0 or n_ = 0, U cannot be extended in the way
which implies statement (ii).

If ny = n_, we may find such a unitary extension V' and (v)
gives statement (iii). [ |
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12 Unbounded operators

Example 12.24: The momentum operator (T f)(¢) = if’(¢) on L?(0,1) is symmetric,
but not selfadjoint. Using , we can see that there is a selfadjoint
extension.

Theorem 12.25 (Spectral theorem for selfadoint unbounded operators): Let T' be
selfadjoint. Let U be its Cayley-transform, then U € B(H) is unitary, i.e., it
holds Sp(U) C 8. Let E: {Borel sets in Sp(U)} — B(H) be the spectral measure
associated to U. Define

F: {Borel sets in R} — B(H)
Ar— B(B7H(A))

with B from . Then F is the spectral measure which is concentrated
on Sp(T) (i.e., if ANSp(T) = &, then F(A) =0). Put

S::/tdFt on D(S) := {xe H:/t2d,u1(t) < oo}.
R R

Then S =T, i.e., in this sense we may “diagonalise” T .
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