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0 Motivation
Analysis is the study of functions f : C→ C (or more generally f : A→ B). We
can ask ourselves for transformations of functions, i. e., mappings

T : {f : A→ B} → {f : A→ B}.

If we do this, several questions emerge:

(i) Which structure do the spaces {f : A→ B} have? For example

C([0, 1]) = {f : [0, 1]→ C continuous}

is a vector space via f+g and λf (pointwise) for λ ∈ C, f, g ∈ C([0, 1]), furthermore
it is normed via ‖·‖∞ and it is complete.

We need to understand topological concepts on vector spaces like the convergence
of sequences of functions and generalisations to {f : A→ B}, which leads to the
concepts of Banach spaces and Hilbert spaces.

(ii) In the setting T : X → Y with vector spaces X and Y , we are particularly
interested in linear functions, a concept we know from linear algebra, e. g.

(Tf)(s) :=
ˆ
Z

k(s, t)f(t) dt

for a suitable k : Z × Z → C. In this sense, we will study “matrices of infinite size”
(namely if X and Y are infinite dimensional). What are “eigenvalues”, what is
“diagonalizing”, . . . ? If dimX,dimY < ∞, then T being linear implies T being
continuous, hence linear algebra. If dimX,dimY = ∞, this implication doesn’t
hold. So, in a way, functional analysis is linear algebra and analysis coming together.
The study of those maps will lead to the concept of operators on Hilbert— and
Banach spaces.

(iii) For matrices (in linear algebra) we have AB 6= BA. This phenomenon
of “non-commutativity” is important for operators on Hilbert spaces and also in
quantum mechanics. If we want to study the space

{T : X → Y linear and continuous}

we will have to deal with non-commutativity. And we will meet algebraic structures,
since {T : X → Y } is again a vector space and even an algebra (for instance if
X = Y via ST := S ◦ T ). We will deal with operator algebraic structures like
Banach algebras, C∗-algebras and von Neumann algebras.
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History of Functional Analysis Some of the main protagonists of functional anal-
ysis are:

• Fredholm (∼ 1900) was interested in integral operators,
• Hilbert (∼ 1910) was interested in spectral theory of general continuous

operators,
• Riesz (∼ 1910/1920) was interested in linear maps on normed spaces,
• Banach (∼ 1920/1930) was the “founder of modern functional analysis”,
• von Neumann (∼ 1930/1940) worked on the mathematical foundation of
quantum mechanics, introduced von Neumann algebras,

• Gelfand (∼ 1940) introduced in C∗-algebras.

Literature suggestions Common literature on the topic are:

• John Conway, A course in Functional analysis, Springer, 1990,
• Friedrich Hirzebruch and Winfried Scharlau, Einführung in die Funktional-
analysis, Spektrum, 1996,
• Reinhold Meise und Dietmar Vogt, Einführung in die Funktionalanalysis,
vieweg, 1992,
• Gert Pedersen, Analysis Now, Springer, 1989.
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1 Topological vector spaces
There is a hierarchy of information regarding “place” and “convergence”:

• topology – shape of boundaries, minimal requirement for continuity
• metric – distances
• normed – scale for distances from an “origin”

Definition 1.1 (Topological space): Let X be a set. A subset T ⊆ P(X) is a
topology on X, if

(i) ∅, X ∈ T,
(ii) U, V ∈ T⇒ U ∩ V ∈ T,

(iii) M ⊆ T⇒
⋃
V ∈M V ∈ T

hold. Elements U ∈ T are called open, A ⊆ X is called closed, if Ac := X \ A is
open.
A topology T is called Hausdorff, if ∀x, y ∈ X,x 6= y there are U, V ∈ T such

that x ∈ U, y ∈ V and U ∩ V = ∅. If Y ⊆ X, then

Y :=
⋂

A closed
Y⊆A

A

is the closure of Y .
N ⊆ X is a neighbourhood of x ∈ X, if there is an open set U ⊆ X such that

x ∈ U ⊂ N .

Remark 1.2: (i) If (X, d) is a metric space (i. e., there exists d : X ×X → [0,∞)
for which d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z) and d(x, y) = 0 ⇔ x = y
hold), then the sets M ⊆ X with

∀ a ∈M ∃ ε > 0 : B(a, ε) := {x ∈ X | d(a, x) < ε} ⊆M

form a Hausdorff topology.
(ii) T = {∅, X} is the trivial topology. The trivial topology is not Hausdorff.
(iii) V ⊆ X is open if and only if V is a neighbourhood for all x ∈ V .

Proof: “⇒” is trivial. For “⇐”: Let x ∈ V and choose x ∈ Ux ⊆ V open, then
V =

⋃
x∈V Ux. �

(iv) Let Y ⊆ X. Then it holds: z ∈ Y if and only if N ∩ Y 6= ∅ for all
neighbourhoods N of z.
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1 Topological vector spaces

Proof: We have the following equivalences:

z ∈ Y ⇔ z ∈ A for all A ⊇ Y closed
⇔ If U is open, U ∩ Y = ∅, then z /∈ U
⇔ For all open sets U : z ∈ U ⇒ U ∩ Y 6= ∅ �

In topological spaces we may define continuity, matching our notion of continuity
in metric spaces.

Definition 1.3 (Continuity): A map f : X → Y between topological spaces is called
continuous in x ∈ X, if for all neighbourhoods N ⊆ Y of f(x): f−1(N) ⊆ X is a
neighbourhood of x. f is called continuous, if it is continuous in all x ∈ X.

Proposition 1.4: (i) Let X,Y be topological spaces. f : X → Y is continuous if
and only if f−1(U) is open for every U ⊂ Y open.

(ii) Let X,Y be metric spaces. f : X → Y is continuous if and only if ∀x ∈ X
∀ ε > 0 ∃ δ > 0 : f(B(x, δ)) ⊂ B(f(x), ε).

Proof: (i) “⇐”: Let x ∈ X and N ⊆ Y be a neighbourhood of f(x). Without
loss of generality let N be open. Then f−1(N) is open and x ∈ f−1(N).
“⇒”: Let U ⊆ Y be open and x ∈ f−1(U), then U is a neighbourhood of f(x).

Thus f−1(U) is a neighbourhood of x and by Remark 1.2 f−1(U) is open.
(ii) “⇒”: Let x ∈ X and ε > 0. Then f−1(B(f(x), ε)) is a neighbourhood of x.

Hence, there is a δ > 0 such that B(x, δ) ⊆ f−1(B(f(x), ε)).
“⇐”: If N ⊆ Y is a neighbourhood of f(x), then there is an ε > 0 with

B(f(x), ε) ⊆ N . Thus, there is a δ > 0 such that we have

B(x, δ) ⊆ f−1(B(f(x), ε)) ⊆ f−1(N),

therefore f−1(N) is a neighbourhood of x. �

In metric spaces we may also express continuity using sequences. In topological
spaces, we need nets.

Definition 1.5: A set Λ is ordered, if there is a relation “≤” such that

(i) λ ≤ λ,
(ii) If λ ≤ µ, µ ≤ λ, then λ = µ,

(iii) If λ ≤ µ and µ ≤ ν, then λ ≤ ν.

Λ is a filtration, if in addition ∀λ, µ ∈ Λ : ∃ ν ∈ Λ : λ ≤ ν, µ ≤ ν.

Remark 1.6: In general two arbitrary elements of a filtration are not comparable.

Definition 1.7: Let X be a topological space, (xλ)λ∈Λ ⊆ X a family and Λ a
filtration. Then (xλ)λ∈Λ is called a net. The net converges to x ∈ X, if for every
neighbourhood N of x there is a λ0 such that xλ ∈ N for all λ ≥ λ0.
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Example 1.8: (i) (Λ,≤) = (N,≤) gives the known concept of sequences.
(ii) Let Λ be the set of all partitions a = t0 < t1 < · · · < tn−1 < tn = b of the

interval [a, b] ⊆ R and let f : [a, b]→ R be continuous. Then Λ is a filtration via
λ ≥ µ :⇔ λ is a partition finer than µ. If we define

sλ :=
∑
ti∈λ

f(ti)(ti − ti−1),

then (sλ)λ∈Λ forms a net converging to
´ b
a
f(t) dt.

Remark 1.9: (i) It is possible, that a net converges to two points. For instance
in T = {∅, X} every net converges to every point.

(ii) Let X be a topological space and Y ⊆ X. Then Y is the set of all limit
points of nets in Y .

Proof: “⊇”: Let (xλ)λ∈Λ ⊆ Y be a net with xλ → z and let N be a neighbourhood
of z. Thus, there is a λ0 ∈ Λ such that xλ ∈ N for all λ ≥ λ0. Then, N ∩ Y 6= ∅
for all neighbourhoods N of z, so z ∈ Y by Remark 1.2.
“⊆”: Let z ∈ Y . Consider the set U of all neighbourhoods of z. This is a

filtration via U ≥ U ′ :⇔ U ⊆ U ′. For any neighbourhood U ∈ U choose xu ∈ U ∩Y
(U ∩ Y 6= ∅ via Remark 1.2), then we have xu → z. �

(iii) A ⊆ X is closed if and only if (xλ → x, xλ ∈ A⇒ x ∈ A). This is a direct
consequence of (ii).

(iv) Let f : X → Y be a mapping between topological spaces. Then f is
continuous if and only if for all nets (xλ) ⊆ X with xλ → x we have f(xλ)→ f(x).

Proof: See exercise 1 on sheet 1. �

Definition 1.10: Let (X, d) be a metric space. A sequence (xn)n∈N is called Cauchy
sequence, if ∀ ε > 0 ∃N ∈ N : ∀n,m ≥ N : d(xn, xm) < ε.
X is called complete, if all Cauchy sequences in X converge.

Example 1.11: (i) Consider X = (0, 1) with the usual metric d(x, y) := |x− y|.
This space is not complete.

(ii) Consider X = (0, 1) with a metric mapping X in a bijective way to R, then
(X, d) is complete.

In the sequel, we need to understand how to complete a space and how to extend
functions to these completions.

Theorem 1.12: Let (X, d) be a metric space. Then there exists a unique (up to
isometry) complete metric space (X̂, d̂) with isometric embedding i : X → X̂ (i. e.,
d̂(i(x), i(y)) = d(x, y)) and i(X) = X̂.
A map ϕ : X → Y between metric spaces with dY (ϕ(x), ϕ(y)) ≤ CdX(x, y) for

all x, y ∈ X and fixed constant C ≥ 0 may be extended in a unique way to a
continuous map ϕ̂ : X̂ → Y with ϕ̂ ◦ i = ϕ in case Y is complete.
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1 Topological vector spaces

Proof: (i) We call two sequences (xn)n∈N, (x′n)n∈N equivalent if and only if
d(xn, x′n)→ 0, in this case we write (xn)n∈N ∼ (x′n)n∈N. We then set

X̂ := {[(xn)n∈N] | (xn)n∈N is a Cauchy sequence in X},

d̂([(xn)], [(yn)]) := limn→∞ d(xn, yn) and

i : X −→ X̂

x 7−→ [(x, x, x, . . . )].

Check, that “∼” is indeed an equivalence relation on the set of Cauchy sequences
with elements in X and that the limit (d(xn, yn))n∈N exists and that d̂ is a metric.

Proof (that the limit of (d(xn, yn)n∈N exists): Via the triangular inequality we
have

d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)− d(xm, ym)
< 2ε

and similarly −2ε < d(xn, yn)−d(xm, ym), so (d(xn, yn))n∈N is a Cauchy sequence
in R, hence the limit exists. �

The map i : X → X̂ is isometric, since

d̂(i(x), i(y)) = lim
n→∞

d(x, y) = d(x, y)

and we have i(X) = X̂, since for [(xn)] ∈ X̂ we have i(xn)→ [(xm)m∈N], because
for ε > 0:

d̂(i(xn), [(xm)]) = lim
k→∞

(xn, xk) < ε

for n ≥ N .
(ii) X̂ is complete: We construct a suitable diagonal sequence. Let (αn)n∈N be

Cauchy in X̂, hence αn = [(xnk )k∈N]. Since “If (an)n∈N is Cauchy and (bn)n∈N is a
subsequence of (an), then d(an, bn)→ 0”, we may assume without loss of generality
that d(xnk , xnk+l) < 1

2k+1 . Also, we may assume

d̂(αn, αn+l) <
1

2n+1

Choose yn := xnk(n) for k(n) ≥ n and d(yn, yn+1) < 1
2n .

Proof (that there is such (yn)): Set y1 := x1
1. If yn has been constructed, then

from
d̂(αn, αn+1) < 1

2n+1 ,

we know, that there exists an l ≥ k(n) + 1 such that d(xnl , x
n+1
l ) < 1

2n+1 . Put
yn+1 := xn+1

l . Then

d(yn, yn+1) ≤ d(xnk(n), x
n
l ) + d(xnl , xn+1

l ) ≤ 1
2k(n)+1 + 1

2n+1 <
1
2n . �
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Then (yn) is Cauchy in X, hence [(yn)n∈N] ∈ X̂. And αm → [(yn)] for m→∞.

Proof (that αm → (yn)): Let ε > 0. Let N be such that 2
2N−1 < ε, let m ≥ N .

Then d̂(αm, [(yn)]) < ε, because for l ≥ m

d(xml , yl) ≤ d(xml , xmk(m)) + d(ym, yl)

<
1

2min{l,k(m)} + 1
2m−1 ≤

2
2N−1 < ε. �

(iii) We set
ϕ̂([(xn)]) := lim

n→∞
ϕ(xn),

this is welldefined, since (ϕ(xn))n∈N is a Cauchy sequence in Y (because we have

dY (ϕ(xn), ϕ(xm)) ≤ CdX(xn, xm)

and (xn)n∈N is a Cauchy sequence). ϕ̂ is continuous and unique. For the continuity:
If we have [(xkn)n∈N → [(xn)n∈N] for k →∞,

d(ϕ̂([(xkn)n∈N]), ϕ̂([(xn)n∈N]))
≤ d(ϕ̂([(xkn)n∈N]), ϕ(xkn)) + d(ϕ(xkn), ϕ(xn)) + d(ϕ(xn), ϕ̂([(xn)n∈N]))
< 3ε

for k, n large. For the uniqueness: Let ϕ′ be another continuous map such that
ϕ′ ◦ i = ϕ, then

ϕ̂([(xn)n∈N])← ϕ(xk) = ϕ′([(xk, xk, xk, . . . ])→ ϕ′([(xn)]),

so ϕ̂ = ϕ′.
As a special case of the construction, we may prove that X̂ and X are isomorphic,

if X ⊆ Y with Y complete (Exercise sheet 1).
For the uniqueness of X̂: Let (Y, dY ) be another complete metric space and

i : X → Y be an isometric embedding, i(X) = Y . Then, by (b), we have î : X̂ → Y
and

Y = i(X) ∼= î(X) ∼= X̂. �

Example 1.13: (i) Let X = Q, then Q̂ = R.
(ii) Let X = C([0, 1]) := {f : [0, 1]→ C continuous},

‖f‖∞ := sup
x∈[0,1]

|f(x)| and ‖f‖1 :=
ˆ 1

0
|f(x)| dx

and denote d∞(f, g) := ‖f − g‖∞, d1(f, g) := ‖f − g‖1. Then (C([0, 1]), d∞) is
complete, but (C([0, 1]), d1) isn’t. We have

( ̂C([0, 1]), d1) = (L1([0, 1]), λ).

11



1 Topological vector spaces

In the following, with K we denote either the real numbers R or the complex
numbers C.

Definition 1.14: Let X be a K-vector space together with a topology. X is a
topological vector space, if

+: X ×X −→ X µ : K×X −→ X

(x, y) 7−→ x+ y (λ, x) 7−→ λx

are continuous.

Remark 1.15: (i) The continuity of the addition means: If xλ → x, yµ → y,
then xλ + yµ → x+ y with a filtration Λ×M with

(λ′, µ′) ≥ (λ, µ) :⇔ (λ′ ≥ λ ∧ µ′ ≥ µ).

(ii) If X is a topological vector space, Y ⊆ X a subspace, then Y ⊆ X is also a
vector space (If x, y ∈ Y , then ∃xλ → x, yµ → y, such that xλ + yµ → x+ y, thus
x+ y ∈ Y ).

Theorem 1.16: Let X,Y be topological vector spaces, T : X → Y a linear map. The
following are equivalent:

(i) T is continuous (in all points),
(ii) T is continuous in some point,

(iii) T is continuous in 0.

Proof: “(i)⇒ (iii)” and “(iii)⇒ (ii)” are trivial.
“(ii)⇒ (i)”: Let T be continuous in z ∈ X. Let xλ → x, then xλ + (z − x)→ z,

thus Txλ = T (xλ + z − x)− T (z − x)→ T (x). �

Definition 1.17: Let X be a K-vector space. A map ‖·‖ : X → R is called a norm,
if

(i) ‖x‖ ≥ 0,
(ii) ‖λx‖ = |λ|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(iv) ‖x‖ = 0⇒ x = 0

hold for all λ ∈ K, x, y ∈ X. Without (iv), ‖·‖ is called a seminorm.

Remark 1.18: Every normed vector space is a topological vector space via the
topology induced by the metric d(x, y) := ‖x− y‖.
Let xn → x and yn → y, then

d(xn + yn, x+ y) = ‖(xn + yn)− (x+ y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ → 0,

so the addition is continuous. The induced metric is translation invariant (i. e.,
d(x+ y, y + z) = d(x, y)) and the norm is continuous (seen as a map ‖·‖ : X → R).
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Example 1.19: (i) Let X = Rn or X = Cn and x = (x1, . . . , xn) ∈ X. Then

‖x‖1 :=
n∑
i=1
|xi| , ‖x‖2 :=

( n∑
i=1
|xi|2

) 1
2

, ‖x‖∞ := max
i=1,...,n

|xi|.

declare norms on X. ‖·‖2 is called the Euclidean norm and matches our geometric
idea of distance.

(ii) Let K be a compact topological space and

X := C(K) := {f : K → C continuous}.

Then
‖f‖∞ := sup

x∈K
|f(x)|

declares a norm on X.
(iii) Let µ be a measure on R and 1 ≤ p <∞. Then

Lp(µ) := Lp(R, µ) := {f : R→ C | ‖f‖p <∞}

where
‖f‖p :=

(ˆ
R

|f(x)|p dµ(x)
) 1
p

is a normed vector space. For p =∞, set

L∞(µ) := {f : R→ C | ∃ c ≥ 0 : {t | |f(t)| > c} is a zero set}

and
‖f‖∞ := inf{c | {t | |f(t)| > c} is a zero set}.

Definition 1.20: Two norms ‖·‖1 and ‖·‖2 are called equivalent, if there are con-
stants C1, C2 > 0 such that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1.

In this case, (X, ‖·‖1) and (X, ‖·‖2) are topologically isomorphic, since

id : (X, ‖·‖1)→ (X, ‖·‖2)

is bijective and continuous in both directions. The norms generate the same
topologies, since xn → x in (X, ‖·‖1) implies xn → x in (X, ‖·‖2) via

‖xn − x‖2 ≤ C2‖xn − x‖1 → 0.

One can show, that all the norms in Example 1.19 (i) are equivalent, in fact all
norms on Rn (or Cn respectively) are equivalent. Hence, there is only one normed
n-dimensional R-vector space (or C-vector space respectively). This is not true in
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1 Topological vector spaces

the infinite dimensional case. Consider for instance the spaces (C([0, 1]), ‖·‖∞) and
(C([0, 1]), ‖·‖1) as in Example 1.13. We have

‖f‖1 =
ˆ 1

0
|f(t)| dt ≤

ˆ 1

0
‖f‖∞ dt ≤ ‖f‖∞,

but there is no constant C > 0 such that ‖f‖∞ ≤ C‖f‖1: Take a function fn as
shown in Figure 1.1.

fn

1
n

1

1

Figure 1.1: Function fn : [0, 1]→ R ↪→ C

Then ‖fn‖1 = 1
2n and ‖fn‖∞ = 1. But suppose it exists C > 0, such that

1 = ‖fn‖∞ ≤ C‖fn‖1, then
1 = ‖fn‖∞ ≤

C

2n
for all n ∈ N, which is a contradiction.

Theorem 1.21: Let X,Y be normed spaces, T : X → Y linear. Then the following
are equivalent:

(i) T is continuous,
(ii) ∃C ≥ 0∀x ∈ X : ‖Tx‖ ≤ C‖x‖.

Proof: “(ii) ⇒ (i)”: It holds

‖Txn − Tx‖ = ‖T (xn − x)‖ ≤ C‖xn − x‖ → 0.

“(i) ⇒ (ii)”: Since T is continuous in 0, for ε = 1 there is a δ > 0 such that
‖Ty‖ ≤ 1 when ‖y‖ ≤ δ. Put C := 1

δ > 0, then it holds for any x ∈ X:

‖Tx‖ = ‖x‖
δ

∥∥∥∥T (δ x

‖x‖

)∥∥∥∥ ≤ ‖x‖δ = C‖x‖.
�

Definition 1.22: Let T : X → Y be a linear map between normed spaces. Put

‖T‖ := inf{C ≥ 0 | ‖Tx‖ ≤ C‖x‖ ∀x ∈ X} ∈ [0,∞],

14



the operator norm. T is bounded, if ‖T‖ <∞. Write

B(X,Y ) := {T : X → Y linear, bounded},

we abbreviate B(X) := B(X,X) and X ′ := B(X,C).

We conclude that Theorem 1.21 tells us: “continious” is the same as “bounded”.

Proposition 1.23: Let X,Y be normed vector spaces and T ∈ B(X,Y ). Then:

(i) ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈ X,
(ii) ‖T‖ = sup{‖Tx‖ | ‖x‖ = 1},

(iii) ‖T‖ = sup{‖Tx‖ | ‖x‖ ≤ 1},

(iv) ‖T‖ = sup{‖Tx‖‖x‖ | x 6= 0}.

Proof: (i) Choose Cn ↓ ‖T‖, then we have ‖Tx‖ ≤ Cn‖x‖ for all x ∈ X.
(ii) Let α := sup{‖Tx‖ | ‖x‖ = 1} ≤ ‖T‖, but we also have

‖Ty‖ = ‖y‖
∥∥∥∥T ( y

‖y‖

)∥∥∥∥ ≤ ‖y‖α,
so ‖T‖ < α.
(iii) and (iv) work similarly. �

Definition 1.24: A Banach space is a normed vector space which is complete (with
respect to the metric induced by the norm).

Example 1.25: (i) Let K be compact, then (C(K), ‖·‖∞) as in Example 1.19 is
complete.

(ii) Lp(µ) is a Banach space for 1 ≤ p ≤ ∞ as in Example 1.19.
(iii) Every finitedimensional normed vector space is complete (check that the

normed vector spaces (Rn, ‖·‖2) and (Cn, ‖·‖2) are complete and then use the
equivalence of norms mentioned in the remark following Definition 1.20).

Theorem 1.26: Let X,Y be normed vector spaces. Then B(X,Y ) is a normed
vector space (i. e., ‖·‖ from Definition 1.22 is indeed a norm). If Y is a Banach
space, then B(X,Y ) is even a Banach space.

Proof: (i) First, we want to show that ‖·‖ is indeed a norm. Let S, T ∈ B(X,Y ),
then

‖(S + T )x‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ ‖S‖+ ‖T |

for all x ∈ X with ‖x‖ = 1, so we have the triangular inequality for ‖·‖. Furthermore,
we have

‖(λT )x‖ = |λ|‖Tx‖ , ‖T‖ = 0⇔ T = 0.
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1 Topological vector spaces

(ii) Let now Y be complete and let (Tn)n∈N be a Cauchy sequence in B(X,Y ).
Then (Tnx)n∈N is a Cauchy sequence for all x ∈ X, so there is a limit limn→∞ Tnx ∈
Y . Put S : X → Y, Sx := limn→∞ Tnx. S is linear, because

S(λx+ µy)←− Tn(λx+ µy) = λTnx+ µTny −→ λSx+ µSy,

and Tn → S (with respect to the operator norm on B(X,Y )!): For a given ε > 0
choose N ∈ N such that ‖Tn−Tm‖ < ε∀n,m ≥ N . Now let x ∈ X so that ‖x‖ = 1
and choose m(x) ≥ N , such that ‖(S − Tm(x))(x)‖ < ε, then

‖(S − Tn)x‖ ≤ ‖(S − Tm(x))x‖+ ‖Tm(x) − Tn‖‖x‖ < ε,

so ‖S − Tn‖ < 2ε. Eventually, S is continuous as a sum S = TN + (S − TN ) for
some N with ‖S − TN‖ < ε (since S − TN is bounded and thus continuous and TN
is continuous by precondition). �

Corollary 1.27: X ′ = B(X,C) is a Banach space.

Proposition 1.28: If X is a normed vector space, then the completion X̂ is a Banach
space.

If T is linear and continuous and Y is a Banach space, then there is a unique
linear continuous extension

T̂ : X̂ → Y

such that ‖T̂‖ = ‖T‖.

Proof: X̂ is a vector space via λ[(xn)n∈N] + µ[(yn)n∈N] := [(λxn + µyn)n∈N] and
it has a norm via

‖[(xn)n∈N]‖ := lim
n→∞

‖xn‖.

Since

d̂([(xn)n∈N], [(yn)n∈N]) = lim
n→∞

d(xn, yn) = lim
n→∞

‖xn − yn‖ = ‖[(xn + yn)n∈N]‖

and X̂ is complete with respect to d̂ by Theorem 1.12, X̂ is a Banach space. Since
d(Tx, Ty) = ‖Tx−Ty‖ ≤ ‖T‖d(x, y), T̂ exists by Theorem 1.12 and one can check,
that T̂ is linear and ‖T̂‖ = ‖T‖ holds true. �

Proposition 1.29: Let T ∈ B(X,Y ) and S ∈ B(Y, Z) for normed vector spaces
X,Y, Z, then ‖ST‖ ≤ ‖S‖‖T‖.

Proof: We have

‖(ST )x‖ = ‖S(Tx)‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖,

taking the supremum proves the claim. �
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Lemma 1.30: In a Banach space, every absolute convergent series converges.

Proof: Let sn :=
∑n
k=1 xk ∈ X and assume

∑∞
k=1‖xk‖ < ∞. Then (sn)n∈N is a

Cauchy sequence, since for n ≥ m

‖sn − sm‖ =
∥∥∥ n∑
k=m+1

sk

∥∥∥ ≤ n∑
k=m+1

‖xk‖ < ε,

so (sn)n∈N converges. �

Definition 1.31: Let E be a normed vector space and let F ⊆ E be a linear subspace.
We put x ∼ y :⇔ x− y ∈ F , then

E/F := {ẋ | x ∈ E}

is called the quotient space, where ẋ is the equivalence class with respect to ∼.
E/F furthermore has a (semi) norm via

‖ẋ‖ := inf{‖y‖ | x ∼ y} = inf{‖x+ z‖ | z ∈ F}.

Theorem 1.32: Let E be a normed vector space, F ⊆ E a linear subspace.

(i) E/F is a vector space via ẋ+ ẏ := (x+ y)·, λẋ := (λx)·,
(ii) ‖·‖ is a semi norm on E/F and it is a norm if and only if F is closed.

(iii) If F is closed, then the canonical quotient map

E −→ E/F

x 7−→ ẋ

is continuous, linear, has norm less or equal 1 and maps open sets to open
sets.

(iv) If F is closed and E is a banach space, then E/F is a Banach space.

Proof: (i) The operations are well-defined, because

(x+ F ) + (y + F ) = (x+ y) + F,

for the scalar multiplication the prove works similarly.
(ii) Let z1, z2 ∈ F such that ‖ẋ‖+ ε = ‖x+ z1‖ and ‖ẏ‖+ ε = ‖y + z2‖. Then

‖ẋ+ ẏ‖ ≤ ‖(x+ y) + z1 + z2‖ ≤ ‖x+ z1‖+ ‖y + z1‖ ≤ ‖ẋ‖+ ‖ẏ‖+ 2ε,

likewise ‖λẋ‖ = |λ|‖ẋ‖, so ‖·‖ is a semi norm.
Moreover ‖ẋ‖ = 0⇔ ∃ (zn)n∈N ⊆ F : ‖x+ zn‖ → 0⇔ x ∈ F . Now assume that

F is closed, then ‖ẋ‖ = 0 implies x ∈ F = F , hence ẋ = 0. Conversely, assume
that ‖·‖ is a norm. Then x ∈ F implies, that ‖ẋ‖ = 0, therefore ẋ = 0, so x ∈ F .
Thus F ⊆ F ⊆ F , hence F is closed.

17
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(iii) Since ‖ẋ‖ ≤ ‖x‖, the quotient map x 7→ ẋ is continuous with norm less or
equal to 1. It remains to be shown, that x 7→ ẋ indeed maps open sets to open sets:
Let V ⊆ F be open and let ẋ ∈ V̇ . We need to show, that there is ε > 0, such
that B(ẋ, ε) ⊆ V̇ . Without loss of generality, assume x ∈ V (otherwise: x+w ∈ V
with w ∈ F ); then there is ε > 0 such that B(x, ε) ⊆ V , because V is open. Let
ż ∈ B(ẋ, ε). Then ‖(z − x)·‖ < ε, hence we find w ∈ F , such that ‖z − x+w‖ < ε.
But then z + w ∈ B(x, ε) ⊆ V and therefore ż = (z + w)· ∈ V̇ .

(iv) It remains to be shown, that E/F is complete. Let (ẋn)n∈N ⊆ E/F be a
Cauchy sequence. Without loss of generality, ‖ẋn − ẋn+1‖ < 2−(n+1) (otherwise,
pass to a subsequence). Hence, there is an an ∈ E, such that ‖an‖ < 2−n and
ȧn = ẋn+1 − ẋn. Then sn :=

∑n
k=1 ak converges absolutely, thus it converges in E

by Lemma 1.30.
Put zn+1 := xn +

∑n
k=1 ak with z1 := x1. Then żn = ẋn and (zn)n∈N converges

to some z ∈ E, so żn → ż due to the continuity of the quotient map. �

Definition 1.33: Let X be a K-vector space and let P be a family of seminorms
on X. X is a locally convex vector space, if it is a topological vector space whose
topology is generated by P : U ⊆ X is open if and only if

∀x ∈ U ∃n ∈ N ∃ p1, . . . , pn ∃ ε1, . . . , εn > 0 : Bp1(x, ε1) ∩ · · · ∩Bpn(x, εn) ⊆ U

holds. Here Bpi(x, ε) := {y ∈ X | pi(x− y) < ε} mean the ε-balls with respect to
pi. Those are in particular open.

Remark 1.34: (i) If X is a normed vector space, then X is a locally convex
vector space and thus even a topological vector space.

(ii) If (xλ)λ∈Λ ⊆ X is a net, then (xλ)→ x if and only if p(xλ − x)→ 0∀ p ∈ P .
(iii) All seminorms p ∈ P are continuous, i. e., if xλ → x, then p(xλ)→ p(x).
(iv) We may add arbitrary continuous seminorms without changing the topology.

In particular, there is a maximal set of seminorms, namely the set of the continuous
seminorms on X, defining a given locally convex topology.

(v) X is Hausdorff if and only if ∀x 6= 0∃ p ∈ P : p(x) > 0.

Proof (of (v)): “⇒”: The net xλ :≡ x converges to x. Suppose p(x) = 0∀ p ∈ P ,
then xλ → 0 by (ii). Because we have xλ → x and xλ → 0, by Sheet 1, Exercise 2,
x = 0 must hold.
“⇐”: Assume xλ → x and xλ → y with x 6= y. By assumption we may find a

p ∈ P such that p(x−y) > 0. But then p(xλ−y)→ 0 and p(xλ−y)→ p(x−y) > 0,
which is a contradiction to the continuity of p. �

Example 1.35: (i) Let

X = C∞([0, 1]) = {f : [0, 1]→ C infinitely many times differentiable}
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and pk(f) := ‖f (k)‖∞, where f (k) is the k-th derivative. In this locally convex
vector space, we have

fn → f ⇔ f (k)
n → f (k)

for all k (uniform convergence of all derivatives).
(ii) Let Ω ⊆ C be open, (fn)n∈N ⊆ C(Ω). We say, that the sequence (fn)

converges to f : Ω→ C, if for all K ⊆ Ω compact the following statement holds:

∀ ε > 0 ∃N ∈ N ∀n ≥ N : ‖fn − f‖K < ε.

Here ‖f‖K := supx∈K |f(x)|. Since (C(K), ‖·‖K) is complete, we obtain that f |K
is continuous, in fact f is even continuous on the whole of Ω. We may prove: If fn
is holomorphic for all n, then f is holomorphic, too. Hence, this convergence is a
useful one and it comes from seminorms (‖·‖K)K⊆Ω.
One can characterise all relatively compact subsets of O(Ω) (in analogy to the

theorem of Arzela-Ascoli) via the theorem of Montel.

Definition 1.36: Let X be a K-vector space and M ⊆ X a subset.

(i) M is convex if and only if ∀x, y ∈M ∀ t ∈ [0, 1] : tx+ (1− t)y ∈M .
(ii) M is called circled if and only if ∀x ∈M ∀λ ∈ K, |λ| ≤ 1 : λx ∈M .

(iii) M is called absorbant if and only if ∀x ∈ X ∃λ > 0 : λx ∈M .

Example 1.37 (in R2): We can illustrate the types of sets defined in Definition 1.36
in R2 with the following example sets:

(a) (b) (c) (d)

Figure 1.2: Examples for a convex set (a), a non-convex set (b), a circled convex
set (c) and a circled, but non-convex set (d).

Remark 1.38: In a locally convex vector space,
⋂n
k=1Bpi(0, εk) is convex, circled

and absorbing. Such sets correspond to our idea of a ball arround zero.

Proposition 1.39: Let X be a K-vector space and let M ⊆ X be a subset.

(i) If M is convex and absorbing, then the “Minkowski functional”

pM (x) := inf{λ > 0 | x ∈ λM}

is a sublinear functional, i. e., it holds (a)∀α ≥ 0∀x ∈ X : p(αx) = αp(x)
and (b) p(x+ y) ≤ p(x) + p(y)∀x, y ∈ X.
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(ii) If in addition M is circled, then pM is also a seminorm. Since

{x | pM (x) < 1} ⊆M ⊆ {x | pM (x) ≤ 1},

the set M is “almost” a unit ball with respect to pM .
Conversely: If p is a seminorm on X, we put Bp := {x ∈ X | p(x) < 1}

and Dp := {x ∈ X | p(x) ≤ 1}. Then Bp and Dp are convex, circled and
absorbing and pBp = pDp = p.

Proof: (i) (a) Let x ∈M and α ≥ 0 with α 6= 0. Then

pM (αx) = inf{λ | αx ∈ λM} = inf{αλ | αx ∈ αλM} = αpM (x).

(b) Let ε > 0 and x, y ∈ M . Then we have (pM (x) + ε)−1x ∈ M aswell as
(pM (y) + ε)−1y ∈M . Because M is convex, their convex combination

pM (x) + ε

pM (x) + pM (y) + 2ε

(
1

pM (x) + ε
x

)
+ pM (y) + ε

pM (x) + pM (y) + 2ε

(
1

pM (y) + ε
y

)
,

is an element of M , so

1
pM (x) + pM (y) + 2ε (x+ y) ∈M,

hence pM (x+ y) ≤ pM (x) + pM (y) + 2ε. ε→ 0 proves the claim.
(ii) Let x ∈M and α ∈ K, α 6= 0. Then

pM (αx) = inf{|α|λ | αx ∈ |α|λM} = |α|pM (x). �

Theorem 1.40 (Characterisation of locally convex vector spaces): Let X be a topo-
logical K vector space. X is locally convex if and only if every neighbourhood of
zero contains an open, convex, circled, absorbant set.

Proof: “⇒”: This is Remark 1.38.
“⇐”: Set P := {pM |M ∈ T convex, circled, absorbant,M ⊆ V, V ∈ U(0)}.
Then the given topology T coincides with σ, the one induced by P .

Proof (That the induced topology coincides with the given one): Let V be open
with resepect to T. We have to show, that V then is open with respect to σ.
Let z ∈ V . Then V ′ := V − z is a neighbourhood of zero with respect to T.
By assumption, we find an open convex, circled, absorbant set M ⊆ V ′. Then
0 ∈ {x | pM (x) < 1} ⊆ M ⊆ V ′, thus V ′ is also a neighbourhood of zero with
respect to σ. Hence V is a neighbourhood of z with respect to σ, then we use
Remark 1.2.
The other inclusion is technical and left as exercise for the reader. �

20



Remark 1.41: (i) The crucial point in Theorem 1.40 is: “There exists a convex
set”. In fact: In any topological vector space, any neighbourhood of zero contains
an open, circled and absorbing set (If U ∈ U(0), then µ−1(U) is a neighbourhood
of (0,0), where µ : K×X → X is the multiplication map, i. e., ∃ ε > 0∃V ∈ U(0)
open such that B(0, ε)× V ⊆ µ−1(U), then put W := {λv | |λ| < ε, v ∈ V } ⊆ U).

(ii) One can characterise metric vector spaces using seminorms (see Sheet 3,
Exercise 1).

(iii) If p1, . . . , pn are seminorms on X, then also
∑n
i=1 pi and max{p1, . . . , pn}

are seminorms and

P ′ :=
{ n∑
i=1

pi : pi ∈ P
}
, P ′′ :=

{
max{p1, . . . , pn} : pi ∈ P

}
define the same topology.
But P ′, P ′′ are ordered (p(x) ≤ q(x)∀x) and filtrations, too (If p, q ∈ P ′, then

p+ q ≥ p, q and if p, q ∈ P ′′, then max{p, q} ≥ p, q).

Theorem 1.42: Let (X1, P1), (X2, P2) be locally convex spaces, T : X1 → X2 a
linear map. Then T is continuous if and only if

∀ q ∈ P2 ∃ p ∈ P1 ∃C ≥ 0 : q(Tx) ≤ Cp(x)∀x ∈ X.

Proof: “⇐”: Let xλ → x and let q ∈ P2. Then q(Txλ − Tx) ≤ Cp(xλ − x) → 0
(by Remark 1.34) for some p ∈ P1.

“⇒”: Let q ∈ P2. Then V := {y ∈ X2 | q(y) < 1} ⊆ X2 is open. Because
T is continuous, we know that T−1V ⊆ X1 is open, i. e., ∃ p1, . . . , pn ∈ P1 and
∃ ε1, . . . , εn > 0, such that

T ({x | pi(x) < εi, 1 ≤ i ≤ n}) ⊆ V.

Now choose ε < min{ε1, . . . , εn}, p ≥ p1, . . . , pn (without loss of generality, P1 is a
filtration) and put C := ε−1. Then we have: If p(x) ≤ ε, then q(Tx) < 1, thus

q(Tx) = q

(
T

(
x
p(x)ε
p(x)ε

))
= Cp(x)q

(
T

(
x

ε

p(x)

))
< Cp(x).

In case p(x) = 0 we have q(Tx) < 1, but also p(Nx) = 0 ∀N ∈ N, and we get
that Nq(Tx) = q(T (Nx)) < 1∀N ∈ N, hence q(Tx) = 0 must hold. �
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2 Hahn-Banach Theorems
In order to understand spaces {f : C→ C}, evaluation maps are very useful, e. g.

evx : {f : C→ C} −→ C

f 7−→ f(x).

More general, we want to understand continuous functionals f : X → K for some
normed vector space X.

Definition 2.1: Let E be a K vector space. A sublinear functional on E is a map
p : E → R such that

(i) p(λx) = λp(x)∀λ ≥ 0 ∀x ∈ E,
(ii) p(x+ y) ≤ p(x) + p(y)∀x, y ∈ E.

Example 2.2: (i) If p is a seminorm on a K vector space E, then p is a sublinear
functional.

(ii) If p : E → R is a linear function, then p is a sublinear functional as well.

In this chapter, we are interested in two kinds of questions:
(1) Extensions: Given a linear function f : F → R with f(x) ≤ p(x) for all x ∈ F

for a subspace F ⊆ E. Can f be extended to a linear function f̃ : E → R? Does
f̃(x) ≤ p(x) still hold?
(2) Separations: Is there a continuous linear function f : X → R such that

f(x) ≤ 1 on M ⊆ X and f(x0) > 1 for a fixed x0 /∈M?

Theorem 2.3 (Hahn-Banach, root version): Let E be an R vector space, p : E → R

be a sublinear functional, F ⊆ E a linear subspace and let f : F → R be linear with
f(x) ≤ p(x)∀x ∈ F . Then there is a linear extension f̃ : E → R of f , such that
f̃(x) ≤ p(x)∀x ∈ E.

Proof: Let

M := {(G, g) | F ⊆ G ⊆ E linear subspace,
g : G→ R linear, g|F = f, g(x) ≤ p(x)∀x ∈ G}

Then M 6= ∅, because (F, f) ∈M , and M is ordered via

(G, g1) ≺ (G2, g2) :⇔ G1 ⊆ G2, g2|G1 = g1.

This order is reflexive (because (G, g) ≺ (G, g)), it is antisymmetric (for (G, g),
(H,h) ∈M holds: if (G, g) ≺ (H,h) ≺ (G, g), then G = H and g = h), transitive
and inductive (if (Gα, gα)α∈Λ ⊆M such that mutually two elements are comparable,
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then G :=
⋃
α∈ΛGα with g(x) := gα(x) for x ∈ Gα ⊆ G is an upper bound). Via

the Lemma of Zorn, it exists a maximal (H,h) ∈M .
Assume H ( E, hence we have z ∈ E \H. We define

h̃ : 〈H, z〉 −→ R

such that (H,h) ≺ (〈H, z〉, h̃) ∈ M . For the definition: Let x, y ∈ H. Then
h(x) + h(y) = h(x+ y) ≤ p(x+ y) ≤ p(x+ z) + p(y − z), so we can put

m := sup
y∈H
{h(y)− p(y − z)} ≤ inf

x∈H
{p(x+ z)− h(x)} =: M.

Now choose a ∈ [m,M ] and put h̃(x+ λz) := h(x) + λa for x ∈ H, λ ∈ R. So, h̃
is well defined and linear, since H and {z} are linearly independent and we have
(H,h) ≺ (〈H, z〉, h̃).

It remains to be shown, that h̃(x) ≤ p(x)∀x ∈ 〈H,x〉. Let λ > 0, then

h̃(x+ λz) = h(x) + λa
a≤M
≤ h(x) + λ

(
p
(x
λ

+ z
)
− h

(x
λ

))
= p(x+ λz). �

Let now λ < 0, then

h̃(x+ λz) = h(x) + λa
a≥m
≤ h(x) + λm

≤ h(x) + λ
(
h
(
−x
λ

)
− p

(
−x
λ
− z
))

= p(x+ λz).

Example 2.4: On `∞R = {(an)n∈N | (an)n∈N bounded, an ∈ R} there is a bounded
linear functional LIM: `∞(R)→ R with

lim inf
n→∞

an ≤ LIM((an)) ≤ lim sup
n→∞

an.

For convergent sequences (an)n∈N, we have that LIM((an)) = limn→∞ an. For
non-convergent sequences, it is this “Banach limit”.

Theorem 2.5 (Hahn-Banach, seminorm version): Let E be a K vector space, p a
seminorm on E, F ⊆ E a linear subspace, f : F → K a linear functional and
|f(x)| ≤ p(x) ∀x ∈ F . Then there is a linear extension f̃ : E → K such that
|f̃(x)| ≤ p(x)∀x ∈ E.

Proof: (i) Let K = R: Since f(x) ≤ |f(x)|, we obtain f̃ by Theorem 2.3 with
f̃(x) ≤ p(x), but −f̃(x) = f̃(−x) ≤ p(−x) = p(x), so we have |f(x)| ≤ p(x).

(ii) Let K = C: Consider u : F → R with u(x) := Re(f(x)), then the inequality
|u(x)| ≤ |f(x)| ≤ p(x) holds. Via (i), we get an extension ũ : E → R, with
|ũ(x)| ≤ p(x). Now put f̃(x) := ũ(x) − iũ(ix). Then f̃(x) = f(x) for x ∈ F ,
because u(ix) = Re(f(ix)) = Re(if(x)) = −Im(f(x)), moreover we have

f̃(x+ y) = f̃(x) + f̃(y) , f̃(λx) = λf̃(x)
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for all x, y ∈ E and λ ∈ R as well as f̃(ix) = ũ(ix) − iũ(−x) = if̃(x), thus
f̃(λx) = λf̃(x)∀λ ∈ C.

Finally, for x ∈ E there is a µ ∈ C with |µ| = 1 such that |f̃(x)| = µf̃(x), so

|f̃(x)| = µf̃(x) = f̃(µx) = Re(f̃(µx)) = ũ(µx) ≤ p(µx) = p(x). �

Corollary 2.6 ((ii) : Hahn-Banach, norm version): Let E be a normed K vector
space.

(i) For all x ∈ E \{0} there exists a continuous, linear f : E → K with f(x) = 1,
(ii) If F ⊆ E is a linear subspace and f : F → K is continuous and linear, then

there is a continuous, linear extension f̃ : E → K such that ‖f̃‖ = ‖f‖.

Proof: (i) Define g : 〈x〉 → K on the onedimensional linear subspace 〈x〉 ⊆ E
via g(λx) := λ and a seminorm p : E → K by p(y) := 1

‖x‖‖y‖. Then we have

|g(λx)| = |λ| ‖x‖
‖x‖

= p(λx).

Theorem 2.5 ensures the existence of a linear extension f̃ : E → K such that
|f̃(y)| ≤ p(y) = 1

‖x‖‖y‖, i. e., f̃ is continuous.

(ii) With p(x) := ‖f‖‖x‖, we have |f(x)| ≤ p(x). By Theorem 2.5 we know, that
there exists a f̃ : E → K such that |f̃(x)| ≤ p(x) = ‖f‖‖x‖, i. e., f̃ is continuous
and ‖f̃‖ ≤ ‖f‖.

For x ∈ F , we have f(x) = f̃(x), hence ‖f‖ ≤ ‖f̃‖ by Proposition 1.23. �

Theorem 2.7 (Hahn-Banach, locally convex version): Let E be a locally convex
vector space and F ⊆ E a linear subspace, f : F → K continuous and linear.
Then there is a continuous linear extension f̃ : E → K.

Proof: Since f is continuous, we find a seminorm p on E and C > 0 such that
|f(x)| ≤ Cp(x) by Theorem 1.42. By Theorem 2.5 we find an extension f̃ , such
that |f̃(x)| ≤ Cp(x), i. e., f̃ is continuous by Theorem 1.42. �

Theorem 2.8 (Hahn-Banach separation theorem): Let E be a locally convex R vec-
tor space and let M ⊆ E be closed and convex such that 0 ∈M . Let x0 /∈M . Then
there is a linear, continuous function f : E → R with f(x0) > 1 and f(x) ≤ 1 for
all x ∈M .

Proof: Let V be an open, convex circled, absorbant neighbourhood of zero such
that (x0 +V )∩M 6= ∅. It exists by Theorem 1.40. Then (x0 + V

2 )∩ (M + V
2 ) = ∅

– we see this equality because if we have x0 + z1
2 = y + z2

2 with z1, z2 ∈ V and
y ∈M , then x0 + 1

2 (z1 − z2) = y ∈M holds, which is a contradiction.
As M ′ := M + V

2 is convex and absorbing, Proposition 1.39 ensures that pM ′ is
a sublinear functional.
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Now put

f0 : 〈x0〉 −→ R

λx0 7−→ λpM ′(x0),

then f0(x) ≤ pM ′(x) holds. By Theorem 2.3, there exists a function f : E → R

with f(x0) = f0(x0) = pM ′(x0) > 1, because x0 + V
2 /∈M ′, and we also have that

f(x) ≤ pM ′(x), hence f is continuous (in Proposition 1.39 we may prove that pM ′
is continuous as soon as out vector space is locally convex and |f(x)| ≤ CpM ′(x)).
And: ∀x ∈M : x ∈M + V

2 = M ′, hence pM ′(x) ≤ 1, i. e., f(x) ≤ 1. �

Corollary 2.9: Let M ⊆ E be a closed linear subspace of a locally convex K vector
space E, x0 ∈ E \M . Then there is a continuous, linear function f : E → K with
f(x0) = 1 and f ≡ 0 on M .

Proof: (i) Let K = R. Theorem 2.8 ensures the existence of a linear map
f : E → R with f(x0) > 1 and f(x) ≤ 1∀x ∈M , hence f(x) = 0∀x ∈M (because
M is a subspace, f(λx) = λf(x) ≤ 1 ∀λ ∈ R), then put f ′ := f

f(x0) .
(ii) Let K = C. Then work with the real and imaginary parts. �

Remark 2.10: Corollary 2.6 (ii) is also true for locally convex vector spaces: Choos-
ing M = {0} proves this.

A consequence of the Theorem of Hahn-Banach is the Theorem of Krein-Milman
about the geometry of locally convex vector spaces. Let’s state and prove it!

Definition 2.11: Let X be a vector space, C ⊆ X be convex.

(i) A subset M ⊂ C is called extremal in C, if it holds:

∀x, y ∈ C ∀ t ∈ (0, 1) : tx+ (1− t)y ∈M ⇒ x, y ∈M.

(ii) A point z ∈ C is called an extremal point of C, if it holds:

∀x, y ∈ C ∀ t ∈ (0, 1) : tx+ (1− t)y = z ⇒ x = y = z.

Example 2.12 (Extremal sets and extremal points in R2): Consider the following
example sets:

(a) (b)

Figure 2.1: Examples for an extremal set (a) and a set with a boundary, that is an
extremal set (b).
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Theorem 2.13 (Krein-Milman): Let X be a locally convex vector space and let
∅ 6= C ⊆ X be a compact, convex subset.

(i) C contains at least one extremal point.

(ii) If ∅ 6= K ⊆ C is a compact, extremal subset, then it contains at least one
extremal point of C.

Proof: Consider M := {∅ 6= K ⊆ C extremal, compact}. Then, M is ordered
inductively by “⊇” (K1 ≤ K2 :⇔ K1 ⊇ K2 and ∅ 6=

⋃
i∈I Ki is an upper bound

for (Ki) ⊆M , Ki ≤ Ki+1). Via the Lemma of Zorn, there is a maximal element
K0 ∈M . We now need to show, that K0 consists of only one single point. Assume,
there are x0 6= y0 in K0. By Corollary 2.9, there exists an f : X → K that is
continuous and linear, such that f(x0−y0) = 1. Without loss of generality, we may
assume Re(f(x0)) 6= Re(f(y0)) (otherwise work with Im(f)). Since K0 is compact,
we have a minimum m of Re(f) on K0. Now let K∗ := {y ∈ K0 | Re(f(y)) = m}.
Then

(1) ∅ 6= K∗ ( K0, because m is a minimum and Re(f(x0)) 6= Re(f(y0)),

(2) K∗ is compact, since K∗ = (Re(f))−1({m}) is a closed subset of a compact
set,

(3) K∗ is extremal in C, because it holds: If tx + (1 − t)y ∈ K∗ for t ∈ (0, 1),
x, y ∈ K0, then x, y ∈ K∗. To see this, suppose tx+ (1− t)y ∈ K∗, t ∈ (0, 1),
x, y ∈ K0. Then

tRe(f(x)) + (1− t)Re(f(y)) = Re(f(tx+ (1− t)y)) = m

and Re(f(x)),Re(f(y)) ≥ m, hence Re(f(x)) = Re(f(y)) = m and thereby
x, y ∈ K∗.

Now let tx + (1 − t)y ∈ K∗, t ∈ (0, 1), x, y ∈ C. Since K0 is extremal in C,
x, y ∈ K0 and by (a), we have x, y ∈ K∗. By (i), (ii), (iii), K0 is not maximal in
M which is a contradiction, hence K0 = {z}.
For (ii): If K ∈M , then {z} ⊆ K0 ⊆ K. �

Lemma 2.14: If M ⊆ X is a subset, then its convex hull

Konv(M) :=
⋂

M⊆C,C convex
C

may be written as

Konv(M) =
{ n∑
i=1

tixi : x1, . . . , xn ∈M, ti ≥ 0,
n∑
i=1

ti = 1, n ∈ N
}
.
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2 Hahn-Banach Theorems

Proof: “⊇”: Konv(M) is convex, so
∑n
i=1 tixi ∈ Konv(M) for all xi ∈ Konv(M):

Via induction one sees that
n+1∑
i=1

tixi = t1x1 + (1− t1)
n+1∑
i=2

ti
(1− t1)xi ∈ Konv(M).

“⊆”: The set {
∑n
i=1 tixi : x1, . . . , xn ∈M, ti ≥ 0,

∑n
i=1 ti = 1, n ∈ N} is convex,

because

t

n∑
i=1

tixi + (1− t)
m∑
j=1

sjyi

=
∑
i

t′ix
′
i ∈
{ n∑
i=1

tixi : x1, . . . , xn ∈M, ti ≥ 0,
n∑
i=1

ti = 1, n ∈ N
}

�

and it contains M .

Corollary 2.15 (Krein-Milman): Let X be a locally convex vector space, C ⊆ X a
compact, convex subset. Then

C = Konv(Ext(C))

where Ext(C) := {z ∈ C | z is an extremal point of C}.

Proof: Let A := Konv(Ext(C)), then A ⊆ C. Now assume ∃x0 ∈ C \A, without
loss of generality it holds 0 ∈ A (otherwise translate the set) and K = R (otherwise
use Re, . . . ). A is closed and convex, by Theorem 2.7, we may find a continuous
linear functional f : X → R, such that f(x0) > 1 and f(x) ≤ 1 ∀x ∈ A. The set

K := {x ∈ C | f(x) = max
y∈C

f(y)}

is non-empty (since C is compact), compact (since it is closed) and extremal in C (as
in the proof of Theorem 2.13), thereforeK contains an extremal point z of C. Hence,
z ∈ A and f(z) ≤ 1. On the other hand, z ∈ K, hence f(z) = maxy∈C f(y) > 1
which is a contradiction. �
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3 Dual spaces
In the first chapter, we saw that it holds: If E is a normed space, then its dual
space

E′ = B(E,K) = {f : E → K linear, continuous}

is a Banach space.

Remark 3.1: There is a bilinear (i. e., linear in both components) map

〈·, ·〉 : E′ × E −→ K

〈f, x〉 := f(x)

If E is a Hilbert space, then E ∼= E′ and 〈·, ·〉 is the inner product. This map is
continuous: Let (fn)n∈N → f and (xn)n∈N → x, then

|fn(xn)− f(x)| ≤ ‖fn − f‖‖xn‖+ ‖f‖‖xn − x‖ → 0,

since (xn)n∈N is bounded as a converget sequence.

Theorem 3.2: Let E be a normed vector space. There is a natural map i : E → E′′

such that i(x)(f) := f(x) for x ∈ E, f ∈ E′. This map is linear, continuous and
isometric (i. e., ‖i(x)‖ = ‖x‖).

Proof: i is well-defined, since i(x) is continuous and linear (i. e., i(x) ∈ E′′):

|i(x)(f)| = |f(x)| ≤ ‖f‖‖x‖ ⇒ ‖i(x)‖ ≤ ‖x‖

which proves, that i(x) is continuous. Moreover, ‖i‖ ≤ 1 i. e., i is continuous.
By Hahn-Banach (Corollary 2.6), we find f ∈ E′ for a given x ∈ E, such that
f(x) = ‖x‖, ‖f‖ = 1 (as an extension of 〈x〉 → K, λx→ λ‖x‖), therefore

|i(x)(f)| = |f(x)| = ‖x‖ ⇒ ‖i(x)‖ = ‖x‖. �

Remark 3.3: Since E′′ is complete, we know that the completion of E is isometri-
cally isomorphic to i(E) ⊆ E′′ (see Sheet 1).

Definition 3.4: E is called reflexive, if and only if i : E → E′′ is an isomorphism.

Example 3.5: (i) We have c′0 = `1 and `1′ = `∞ by Sheet 2, so c0 is not reflexive.
(ii) Put c := {(an)n∈N | an ∈ C, (an) converges}, then c ) c0, but c′ = c′0 (see

Sheet 4).
(iii) For 1 ≤ p, q < ∞ with 1

p + 1
q = 1, then `p′ = `q and `q′ = `p, hence `p is

reflexive for 1 < p <∞.
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3 Dual spaces

Theorem 3.6: Let E,F be normed spaces, let T : E → F be a linear, continuous
map.

(i) There is exactly one map T ′ : F ′ → E′, such that ∀x ∈ F ′, y ∈ E

〈x, Ty〉F ′×F = 〈T ′x, y〉E′×E .

(ii) The diagram

E
T //

i
��

F

i
��

E′′
T ′′

// F ′′

commutes, i. e., T ′′ extends T ,
(iii) T ′ is continuous, linear and it holds ‖T ′‖ = ‖T‖.

Proof: (i) Put T ′(f) := f ◦ T ∈ E′. Then

〈x, Ty〉 = x(Ty) = (x ◦ T )(y) = (T ′x)(y) = 〈T ′x, y〉

(ii) Let x ∈ E, f ∈ F ′. Then we have(
T ′′(ix)

)
(f) 3.1= 〈T ′′(ix), f〉F ′×F

(a)= 〈ix, T ′f〉E′×E
3.1= (ix)(T ′f)

3.2= (T ′f)(x) 3.1= 〈T ′f, x〉E′×E
(a)= 〈f, Tx〉F ′×F

3.1= f(Tx) 3.2= (i(Tx))(f)

therefore, for all f ∈ E′, it holds that T ′′(ix) = i(Tx) and as this holds for any
x ∈ E, it holds that T ′′ ◦ i = i ◦ T .

(iii) That T ′ is linear is clear. Let x ∈ F ′ and y ∈ E. Then it holds

|(T ′x)(y)| = |x(Ty)| ≤ ‖x‖‖Ty‖ ≤ ‖x‖‖T‖‖y‖ ∀ y ∈ E

hence ‖T ′x‖ ≤ ‖x‖‖T‖ ∀x ∈ F ′ which implies ‖T ′‖ ≤ ‖T‖. In particular, T ′ is
continuous.
We also have ‖T ′′‖ ≤ ‖T ′‖ ≤ ‖T‖ and ‖T‖ ≤ ‖T ′′‖, because

‖T ′′‖ = sup{‖T ′′y‖ | y ∈ E′′, ‖y‖ = 1}
≥ sup{‖T ′′ix‖ | x ∈ E, ‖x‖ = 1}
= sup{‖Tx‖ | x ∈ E, ‖x‖ = 1} = ‖T‖

since i : E → E′′ with ‖i(x)‖ = ‖x‖. �

Remark 3.7: The norm on E is given by ‖x‖ := sup{|f(x)| | f ∈ E′, ‖f‖ = 1} (see
Sheet 3).
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4 Theorem of Baire (and some
consequences)

Consider c0 = {(an)n∈N | an ∈ C, limn→∞ an = 0}. This is a vector space. What
is a basis of this vector space? One could try en := (δi,n)n∈N ∈ c0, but this is not
a basis of c0; it only spans f = {(an)n∈N | am = 0 for m ≥ N and some N ∈ N}.
We will see, that c0 does not have a countable vector space basis. In fact: there is
no Banach space of countable infinity vector space dimension. Why?

Theorem 4.1 (Baire): Let X be a complete metric space and let Mn ⊆ X be closed
subsets, such that X =

⋃
n∈IMn, I countable. Then there is a n0 ∈ I and an open

set U 6= ∅, such that U ⊆Mn0 .

Proof: Assume: ∀x ∈ X ∀ ε > 0∀n ∈ N : B(x, ε) ∩ X \Mn 6= ∅. Let x0 ∈ X,
ε0 > 0. Then B(x0, ε0) ∩ (X \M1) 6= ∅ is open, hence we can find x1 ∈ X and
0 < ε1 <

ε0
2 with B(x1, 2ε1) ⊆ B(x0, ε0) ∩ (X \M1). Chose inductively xn ∈ X

and 0 < εn <
1

2n ε0, such that

B(xn, 2εn) ⊆ B(xn−1, 2εn−1) ∩ (X \Mn) 6= ∅

Hence, the sequence (xn)n∈N is a Cauchy sequence and thus converges to some
x ∈ X. For n ∈ N, we have d(xn, x) = limm→∞ d(xn, xm) ≤ εn, which implies
x ∈ B(xn, 2εn) ⊆ X \ Mn, so for all n ∈ N: x /∈

⋃
n∈NMn = X, which is a

contradiction. �

Remark 4.2: (i) Another formulation of Theorem 4.1 is: Let X be a complete
metric space, Un ⊆ X dense and open subsets of X for n ∈ N, then also⋂
n∈N Un is dense in X.

(ii) For a subset M ⊆ X of a topological space, M is said to be

(1) nowhere dense, if M has no (nonempty) open subsets,
(2) of first category, if M =

⋃
n∈NMn, with Mn nowhere dense for all n,

(3) of second category, in any other case.

Another way to formulate Baire’s theorem then is: Every complete metric
space X is of second category in itself.

Corollary 4.3: There is no Banach space of countable (infinite) vector space di-
mension.

This Corollary will be proven on an exercise sheet to come.
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4 Theorem of Baire (and some consequences)

Theorem 4.4 (Principle of uniform boundedness):

(i) nonlinear: Let X be a complete metric space and

F ⊆ CR(X) = {f : X → R | f continuous}

such that supf∈F f(x) <∞∀x ∈ X. Then there exists an open ball U ⊆ X
such that

sup
x∈U

sup
f∈F

f(x) <∞.

(ii) linear: Let X be a Banach space and Y be a normed space and A ⊆ B(X,Y ),
such that supT∈A‖Tx‖ <∞∀x ∈ X. Then we also have

sup
T∈A
‖T‖ <∞.

Proof: (i) Let X =
⋃∞
n=1Mn for Mn := {x ∈ X | f(x) ≤ n∀ f ∈ F}. Those

Mn can be written as

Mn =
⋂
f∈F

{x ∈ X | f(x) ≤ n} =
⋂
f∈F

f−1([−∞, n]),

and thus are closed. Then use Theorem 4.1.
(ii) Put F := {fT : X → R, x 7→ ‖Tx‖ | T ∈ A} ⊆ CR(X). Via (i) we have:

There exists U(x0, R) and a K ≥ 0, such that ‖Tx‖ ≤ K ∀x ∈ U, T ∈ A. Let now
x ∈ X with ‖x‖ = 1. Thenn

‖Tx‖ = 2
R

(
T

(
R

2 x
))
≤ 2
R

∥∥∥∥T (R2 x+ x0

)∥∥∥∥+ 2
R
‖Tx0‖ ≤

4
R
K ∀T ∈ A.

�

Corollary 4.5: Let E be a normed space, M ⊆ E a subset, such that f(M) is
bounded for all f ∈ E′. Then M is bounded (If M is bounded in every one-
dimensional direction, then M itself is bounded).

This Corollary again will be proven on an exercise sheet to come.

Corollary 4.6 (Theorem of Banach-Steinhaus): Let X be a Banach space and Y
be a normed space, (Tn)n∈N ⊆ B(X,Y ). If (Tn)n∈N converges pointwise, then
the limit T is in B(X,Y ). Therefore we have Tx = limn→∞ Tnx and we have
‖T‖ ≤ supn∈N‖Tn‖ <∞.

Proof: That T is linear, is clear. It remains to be shown, that T is also bounded.
For x ∈ X, we have hat ‖Tnx‖ ≤Mx ∀n ∈ N. By Theorem 4.4, we therefore have
s = supn∈N‖Tn‖ <∞. Let now x ∈ X with ‖x‖ = 1 and ε > 0. Then

‖Tx‖ ≤ ‖Tx− Tnx‖+ ‖Tnx‖ < ε+ s ∀ ε > 0,

so ‖Tx‖ ≤ s∀x : ‖x‖ = 1, hence ‖T‖ ≤ s. �
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Another important consequence of Baire’s theorem (Theorem 4.1) is the so called
“Open mapping theorem”: Let E,F be complete metric vector spaces and let
T ∈ B(E,F ). If T is bijective, then there exists T−1 : F → E and it is linear – but
is T−1 continuous? Do we have T−1 ∈ B(F,E)? This is especially intersting for
E = F : Is B(X) closed under taking inverses (with respect to the multiplication
TS := T ◦S)? We have to show, that (T−1)−1(U) ⊆ F is open for all open U ⊆ E.

Definition 4.7: A mapping T : E → F between topological vector spaces is called
open, if TU ⊆ F is open for all open U ⊆ E.

Lemma 4.8: Let E,F be complete metric vector spaces, T : E → F continuous,
linear. If T is open, then T is surjective.

Proof: As E ⊆ E is open, we have that TE ⊆ F is an open subvectorspace. So
there exists r > 0, such that B(0, r) ⊆ TE. If now x ∈ F is given, we have
1
nx ∈ B(0, r) for suitable n ∈ N, which implies

x = n

(
1
n
x

)
∈ TE.

�

Theorem 4.9: Let E,F be complete normed vector spaces (or a translation invariant
metric, i. e., d(x+ z, y + z) = d(x, y)) and T : E → F continuous, linear. If T is
surjective, then T is open.

Proof: For ε > 0, we define Eε := B(0, ε) ⊆ E. Then⋃
n∈N

nTEε =
⋃
n∈N

T (nEε) = T
( ⋃
n∈N

nEε

)
= TE = F.

Especially, it holds: F =
⋃
n∈N nTEε, by Theorem 4.1 there exists n0 ∈ N, such

that n0TEε contains an open set U . This implies T ( 1
2Eε) contains 1

2n0
U . This

implies

T

(
1
2Eε −

1
2Eε

)
= T

(
1
2Eε

)
− T

(
1
2Eε

)
contains 1

2n0
U − 1

2n0
U 3 0. Results so far are: It exists an open Eε, Eε 7→ TEε,

such that T (Eε) ⊃ V 3 0 for an open V ⊆ F . It remains to be shown, that
V ⊆ T (E3ε).
In this case: Let U ⊆ E, y ∈ T (E) and let x ∈ E such that T (x) = y. This

implies:
∃ δ > 0 : x+ δE3ε ⊆ E ⇒ T (x+ δE3ε) ⊇ y + δV.

Let Vi = 2−iV , i. e., Vi ⊆ TE2−iε. Let y ∈ V , i. e., y ∈ T (Eε). Then there exists
x0 ∈ Eε, such that Tx0 ∈ y+V1. So there exists x1 ∈ E2−1ε with Tx0 +Tx1 ∈ y ∈
V2 – this holds, because Tx0−y ∈ V1 ⊆ TE2−1ε. Inductively, we get: ∃xn ∈ E2−nε
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4 Theorem of Baire (and some consequences)

with sn =
∑n
i=0 Txi ∈ y+Vn+1. This implies sn → y for n→∞ and tn :=

∑n
i=0 xi

is Cauchy, because for n ≤ m:

d(tn, tm) ≤ 2−(n+1)ε+ 2−(n+2)ε+ 2−nε ≤ 2−nε.

Because E is complete, tn → z ∈ E2ε. Because T is continuous, this implies

y
n→∞←− sn = Ttn

n→∞−→ Tz ∈ T (E3ε). �

Corollary 4.10: Let E,F be Banach spaces, T : E → F linear and continuous.
Then T is surjective if and only if T is open.

Proof: “⇐” is Lemma 4.8, “⇒” is Theorem 4.9. �

Corollary 4.11: Let E,F be Banach spaces, T : E → F be linear and continuous.
If T is bijective, then T−1 is continuous. Hence: If T ∈ B(E,F ) is bijective, then
T−1 ∈ B(F,E).

Proof: For all U ⊆ E open, it holds (T−1)−1(U) = TU ⊆ F is open. �

Corollary 4.12: Let E,F be Banach spaces, T : E → F be continuous and linear
and bijective. Then E and F are isomorphic as Banach spaces.

Proof: Because T and T−1 are continuous, we have the estimation

c1‖x‖E ≤ ‖Tx‖F ≤ c2‖x‖E . �

Example 4.13: Let E be a Banach space and let M ⊆ E be a closed subspace.
Then E → E/M is surjective, hence also open (see also Theorem 1.32). Let F be
another Banach space, T : E → F be linear and continuous. Then

ker(T ) := {x ∈ E | Tx = 0} ⊆ E

is a closed subspace. Assume now, that T is surjective. Then, E/ker(T ) ∼= F as
Banach spaces.

Proof: We have the diagram:

E
T //

π $$

F

E/ker(T )
S

::
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Set Sẋ := Tx. S is welldefined, because ẋ = ẏ, if x− y ∈ ker(T ) which is the case,
if Tx = Ty. That S is linear, is clear. For the continuity, we have

‖Sẋ‖ = ‖Tx‖ = inf{‖Tz‖ | z ∼ x} ≤ ‖T‖‖ẋ‖.

For the injectivity: If there are ẋ, ẏ ∈ E/ker(T ) with Sẋ = Sẏ, then Tx = Ty,
which implies that x − y ∈ ker(T ), hence ẋ = ẏ. S is surjective, because T is
surjective. Then use Corollary 4.12. �

Definition 4.14: Let T : E → F be a map. Put

Graph(T ) := {(x, Tx) ∈ E × F} ⊆ E × F,

Graph(T ) is called the graph of T .

Remark 4.15: Graph(T ) ⊆ E × F is closed (in the product topology) if and only
if “(xn, Txn)→ (x, y)⇒ Tx = y” holds (i. e., xn → x, Txn → y).

Theorem 4.16 (of the closed graph): Let E,F be Banach spaces, T : E → F be
linear. If Graph(T ) ⊆ E × F is closed, then T is continuous.

Proof: The space E×F is again a normed space via ‖(x, y)‖∞ := max{‖x‖, ‖y‖} or
‖(x, y)‖1 := ‖x‖+ ‖y‖ or ‖(x, y)‖2 := (‖x‖2 + ‖y‖2) 1

2 . These norms are equivalent
and describe the product topology on E × F :

(xn, yn)→ (x, y)⇔ xn → x, yn → y.

Hence E × F is a Banach space and Graph(T ) is also a Banach space.
The maps

πE : Graph(T ) −→ E πF : Graph(T ) −→ F

(x, y) 7−→ x (x, y) 7−→ y

are linear and continuous. Moreover, πE is even bijective, via Corollary 4.11 then
also π−1

E is also continuous. Then T = πF ◦ π−1
E is also continuous. �
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5 Hilbert spaces
In order to study linear maps A : Cn → Cn (i. e., A ∈Mn(C)). The values ai,j are
useful, with A = (ai,j). We have an inner product on Cn via

〈x, y〉 :=
n∑
i=1

xiyi

for x, y ∈ Cn and using the canonical basis {e1, . . . , en} ⊆ Cn of Cn, where
ei = (δi,j)1≤j≤n ∈ C, we have

〈Aej , ei〉 =
〈 n∑
k=1

ak,jek, ei

〉
=

n∑
k=1

ak,j〈ek, ei〉 =
n∑
k=1

ak,jδk,j = ai,j .

Hence, for general linear maps A, it woud be nice to have an inner product and
a “bases” (ei) such that 〈ei, ej〉 = δi,j .

Definition 5.1: A map 〈·, ·〉 : H×H → K on a K vector space H is an inner product
(scalar product appears in literature aswell), if it holds for all x, y, z ∈ H and λ ∈ K

(i) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉,
(ii) 〈x, y〉 = 〈y, x〉,

(iii) 〈x, x〉 ≥ 0,
(iv) 〈x, x〉 = 0⇒ x = 0.

A map, that satisfies (i)-(iii) (without (iv)), is called a positive hermitian form. A
vector space H equipped with an inner product, is called pre Hilbert space.

Remark 5.2: We have

〈z, λx+ µy〉 (ii)= 〈λx+ µy, z〉 (i), (ii)= λ〈z, x〉+ µ〈z, y〉.

Hence, 〈·, ·〉 is linear in the first component and anti-linear in the second (math
convention as opposed to physicist convention).

Example 5.3: (i) Cn and Rn are pre Hilbert spaces via

〈x, y〉 :=
n∑
i=1

xiyi,

(ii) C([0, 1]) is a pre Hilbert space via 〈f, g〉 :=
´ 1

0 f(t)g(t) dt,
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(iii) (L2([0, 1]), λ), where λ is the Lebesgue measure, or more general (L2(X), µ)
for a set X and a measure µ on a σ-Algebra A on X, are pre Hilbert spaces via

〈f, g〉 =
ˆ
X

f(t)g(t) dµ(t) .

For X = N, A = P(N) and µ = ζ, where ζ is the counting measure, (L2(N), ζ) = `2

with the scalar product
〈(an), (bn)〉 =

∑
n∈N

anbn

Proposition 5.4: Let H be a pre Hilbert space. Put ‖x‖ :=
√
〈x, x〉 for x ∈ H.

Then it holds:

(i) ‖x+ y‖2 = ‖x‖2 + 2Re(〈x, y〉) + ‖y‖2,
(ii) We have the Cauchy-Schwarz-Inequality |〈x, y〉| ≤ ‖x‖‖y‖. We have equality

if and only if x and y are linearly dependent,
(iii) ‖·‖ as defined in (i) is a norm,
(iv) For y ∈ H, fy(x) := 〈x, y〉 is an element of the dual space H ′ such that

‖fy‖ = ‖y‖.

Proof: (i) We calculate

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉,

which proves the claim.
(ii) Without loss of generality, we assume y 6= 0 (in case y = 0, 〈x, y〉 = ‖y‖ = 0).

For λ ∈ K, we have

〈x+ λy, x+ λy〉 (i)= 〈x, x〉+ 2Reλ〈x, y〉+ |λ2|〈y, y〉.

With λ := (−〈x, y〉)(〈y, y〉)−1, we have

0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉 − 2Re 〈x, y〉〈x, y〉
〈y, y〉

+ |〈x, y〉|
2

〈y, y〉

= 〈x, x〉 − |〈x, y〉|
2

〈y, y〉

Moreover, |〈x, y〉|2 = 〈x, x〉〈y, y〉 ⇔ 0 = 〈x+ λy, x+ λy〉 ⇔ x = −λy.
(iii) It holds ‖x‖ ≥ 0 by definition of the inner product, moreover it holds

‖λx‖ = |λ|‖x‖ by definition aswell as ‖x‖ = 0⇒ x = 0.
For the triangular inequality, we compute

‖x+ y‖2 (i)= ‖x‖2 + 2Re〈x, y〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2
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(iv) fy is linear. For the norm:

|fy(x)| = |〈x, y〉|
(ii)
≤ ‖x‖‖y‖ ≤ ‖y‖,

so fy ∈ H ′. Since fy(y) = 〈y, y〉 = ‖y‖2, we have ‖fy‖ ≥ ‖y‖. �

Remark 5.5: (i) If 〈·, ·〉 is just a positive hermetian form (rather than an inner
procut), the Cauchy-Schwarz inequality still holds, ‖·‖ then only is a seminorm.

(ii) The map x 7→ ‖x‖ is continuous (see Remark 1.18) and x 7→ 〈x, y〉 for fixed
y ∈ H is continuous as well (Proposition 5.4 (iv)), likewise y 7→ 〈x, y〉 for fixed x.

Definition 5.6: A Hilbert space is a complete (with respect to ‖·‖ from Proposi-
tion 5.4 (iii)) pre Hilbert space.

Example 5.7: (i) Cn with 〈x, y〉 =
∑n
i=1 xiyi is a Hilbert space (in fact, every

finitedimensional pre Hilbert space is a Hilbert space),

(ii) C([0, 1]) with 〈f, g〉 :=
´ 1

0 f(t)g(t) dt is no Hilbert space.

(iii) L2(X,µ) with 〈f, g〉 =
´
X
f(t)g(t) dµ(t) is a Hilbert space, in particular `2

is a Hilbert space. More generally

`2(I) :=
{

(ai)i∈I : ai ∈ C ∀ i ∈ I,
∑
i∈I
|ai|2 <∞

}
is a Hilbert space with 〈(an), (bn)〉 =

∑
i∈I aibi for any index set I.

(iv) If H is a pre Hilbert space, then its completion (in the sense of chapter 1,
using ‖·‖) Ĥ is a Hilbert space with

〈[(xn)], [(yn)]〉 := lim
n→∞

〈xn, yn〉.

Since (〈xn, yn〉)n∈N is a Cauchy sequence:

|〈xnyn〉 − 〈xm, ym〉| ≤ ‖xn − xm‖‖yn‖+ ‖xn‖‖yn − y‖ → 0,

this inner product is well-defined and we have

‖[(xn)]‖ =
√
〈[(xn)], [(xn)]〉 = lim

n→∞

√
〈xn, xn〉 = lim

n→∞
‖xn‖.

The completion of (C([0, 1], 〈·, ·〉) from Example 5.7 (ii) is (L2([0, 1]), λ, 〈·, ·〉).
(v) If K ⊆ H is a closed subspace of a Hilbert space, then K is a Hilbert space,

too.
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Remark 5.8: If x, y 6= 0, then

](x, y) := cos(α) := |〈x, y〉|
‖x‖‖y‖

defines an angle α ∈ [0, 2π] between x and y, with x is orthogonal to y, if 〈x, y〉 = 0
We then write x ⊥ y.

Proposition 5.9: (i) Let H be a pre Hilbert space. Then the parallelogram iden-
tity holds:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) ∀x, y ∈ H.

(ii) If H is a C vector space with a sesquiliniear form (for instance with an inner
product), then

〈x, y〉 = 1
4

3∑
k=0

ik〈x+ iky, x+ iky〉.

If 〈·, ·〉 is an inner product, we have 〈x, y〉 = 1
4
∑3
k=0 ik‖x+ iky‖2.

If H is an R vector space with inner product, then

〈x, y〉 = 1
4(‖x+ y‖2 − ‖x− y‖2).

This identity is called the polarisation identity.
(iii) If H is a normed space, it is a pre Hilbert space if and only if the parallelogram

identity holds.

Proof: (i) This is an exercise on Sheet 6.
(ii) It holds

1
4

3∑
k=0

ik〈x+ iky, x+ iky〉 = 1
4

3∑
k=0

(
ik〈x, x〉+ i2〈y, x〉+ 〈x, y〉+ ik〈y, y〉

)
= 〈x, y〉.

(iii) “⇒” is (i). “⇐”: For K = C, we define

〈x, y〉 := 1
4

3∑
k=0

ik‖x+ iky‖2

and check, that this indeed is an inner product. �

We wonder, if balls in Hilbert spaces round? What’s the shape of balls in Hilbert
spaces?
Let x be outside of such a ball B. Is there a unique element x0 ∈ B, such that

‖x− x0‖ = inf{‖x− y‖ | y ∈ B}?
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5 Hilbert spaces

If we take for example H = R2, then the unit balls with respect to the norms
‖·‖1, ‖·‖2, ‖·‖∞ look like this:

‖·‖1

‖·‖2

‖·‖∞

Figure 5.1: Unit balls in R2.
The answer to the above question is yes for ‖·‖2, and no for ‖·‖1, ‖·‖∞, e. g. for

x = (2, 0), ‖x, x0‖∞ ≡ 1∀x0 ∈ {(1, t) | t ∈ [−1, 1]}.

Theorem 5.10: Let H be a Hilbert space, A ⊆ H convex, closed and x ∈ H \ A.
Then there is a unique element x0 ∈ A, such that

‖x− x0‖ = inf{‖x− y‖ | y ∈ A} =: dist(x,A).

Proof: Put d := dist(x,A). Let (yn) ⊆ A be such that ‖yn − x‖ → d. Then (yn) is
Cauchy: If we put zn := yn − x, then

‖yn − ym‖2 = ‖zn − zm‖2 = 2(‖zn‖2 + ‖zm‖2)− ‖zn + zm‖2

= 2(‖yn − x‖2 + ‖zm‖)− 4‖1
2(yn + ym)− x‖2

≤ 4ε,

for some N ∈ N, because ‖yn − x‖ ≤ d2 + ε for n,m ≥ N . Because A is closed,
(yn) converges to a point x0 ∈ A, with ‖x− x0‖ = d.

The uniqueness of x0 remains to be shown. Let x′0 ∈ A with ‖x−x′0‖ = d. Then
(yn) := (x0, x

′
0, x0, x

′
0, . . . ) is a Cauchy sequence. �

Remark 5.11: In a Hilbert space, the following holds:

∀x1, x2 ∈ H ∀ r1, r2 : r1 + r2 = d(x1, x2) : ∃!x0 ∈ B(x1, r1) ∩B(x2, r2).
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Definition 5.12: Let H be a Hilbert space.

(i) x, y ∈ H are said to be orthogonal (in signs: x ⊥ y), if 〈x, y〉 = 0.
(ii) M1,M2 ⊆ H are said to be orthogonal (in signs: M1 ⊥ M2), if 〈x, y〉 =

0∀x ∈M1, y ∈M2.
(iii) Let M ⊆ H. The orthogonal complement of M is defined as

M⊥ := {x ∈ H | x ⊥ y ∀ y ∈M}

Remark 5.13: IfM ⊆ H is a subset of H, thenM⊥ ⊆ H is a closed linear subspace.
Moreover: If M ⊆ N ⊆ H, then M⊥ ⊇ N⊥. It holds M⊥ = M

⊥. If M is a linear
subspace, then M⊥⊥ := (M⊥)⊥ = M .

Lemma 5.14 (Theorem of Pythagoras): If H is a Pre Hilbert space, x, y ∈ H with
x ⊥ y. Then it holds:

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof: We easily calculate

‖x+ y‖2 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉 = 〈y, y〉 = ‖x‖2 + ‖y‖2. �

Theorem 5.15: Let H be a Hilbert space and K ⊆ H be a closed linear subspace.
Furthermore let x ∈ H, x0 ∈ K. Then ‖x− x0‖ = dist(x,K) holds if and only if
x− x0 ∈ K⊥.

Proof: “⇒”: Let y ∈ K, ‖y‖ = 1 and z := x0−x. We need to show, that 〈z, y〉 = 0.
Let α ∈ C. Then

‖z‖2 = dist(x,K)2 ≤ ‖x− (x0 + αy)‖2 = ‖z − αy‖2

= 〈z, z〉 − α〈y, z〉 − α〈z, y〉 = ‖α‖2〈y, y〉,

if we put α := 〈z, y〉, we get 0 ≤ −‖α‖2, hence α = 0.
“⇐”: Let y ∈ K. Then, with the theorem of Pythagoras, we get

‖x− y‖2 = ‖(x− x0) + (x0 − y)‖2 = ‖x− x0‖+ ‖x0 − y‖2 ≥ ‖x− x0‖2. �

Definition 5.16: Let K1,K2 ⊆ H be two closed subspaces of a Hilbert space H,
such that K1 ⊥ K2. We denote then

K1 ⊕K2 := {x+ y | x ∈ K1, y ∈ K2} ⊆ H.

and call K1 ⊕K2 the direct sum of K1 and K2.

Lemma 5.17: If K1,K2 ⊆ H are closed subspaces of a Hilbert space, K1 ⊥ K2.
Then K1 ∩K2 = {0} and every element x ∈ K1 ⊕K2 has a unique decomposition
of the form x = x1 + x2 with x1 ∈ K1, x2 ∈ K2.
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Proof: If x ∈ K1 ∩K2, then x ⊥ x, thus 〈x, x〉 = ‖x‖ = 0, which implies x = 0.
Let x = x′1 + x′2 be another such decomposition of x with x′1 ∈ K1, x′2 ∈ K2,

then x1 − x′1 = x2 − x′2 ∈ K1 ∩K2 = {0}, thus the decomposition is unique. �

Theorem 5.18: Let K ⊆ H be a closed linear subspace of a Hilbert space H. Then
H decomposes as H = K ⊕K⊥.

Proof: K⊥ ⊆ H is a closed subspace by Remark 5.13, and K ⊥ K⊥ holds by
definition. It remains to be shown, that H ⊆ K ⊕K⊥. Let therefore x ∈ H. By
Theorem 5.10, there exists x0 ∈ K with ‖x−x0‖ = dist(x,K) and by Theorem 5.15,
x−x0 ∈ K⊥. If we put x1 := x0, x2 := (x−x0), we have x = x1 +x2 ∈ K⊕K⊥.�

Remark 5.19: Such a decomposition theorem does not hold for general Banach
spaces, since such “best” approximations Theorem 5.10 might not be unique.
Decompositions X = M ⊕ N with M ∩ N = {0} and M × N = X of a Banach
space X into Banach subspaces M,N ⊆ X might neither exist, nor be unique.
For the uniqueness: In a finitedimensional Banach space X, linear subspaces are
automatically complete, linear hulls of subsets of bases of X give such subspaces.
The Steinitz exchange lemma gives the non-uniqueness. For the non-existence: We
may not find an N , such that `∞ = c0 ⊕N .
In fact: If X is a Banach space such that for each closed subspace M ⊆ X we

find a closed subspace N ⊆ X with X = M ⊕N , then X is a Hilbert space.

Theorem 5.20 (Riesz representation theorem): Let H be a Hilbert space. Then
the map

j : H −→ H ′

y 7−→ fy = 〈·, y〉

is an antilinear, isometric isomorphism. Hence H ∼= H ′, in particular: H is
reflexive. Thus for f ∈ H ′ we find a y ∈ H, such that f = fy.

Example 5.21: Let g ∈ L2(X,µ). Put f(h) :=
´
X
hg dµ. Then f

f : L2(X,µ) −→ C

h 7−→
ˆ
X

hg dµ

is a linear functional. Are there more kinds of linear functinals? No! Let
f : L2(X,µ) → C be a linear functional. Then f ∈ L2(X,µ)′. By Theorem 5.20,
there is a g ∈ L2, such that f = fg.

Proof (Theorem 5.20): First, we want to show the anti-linearity of j:

j(λy1 + µy2)(x) = 〈x, λy1 + µy2〉 = λ〈x, y1〉+ µ〈x, y2〉 = λj(y1)(x) + µj(y2)(x),
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i. e., j is anti-linear. Via Proposition 5.4, we have that

‖j(y)‖ = ‖fy‖ = ‖y‖,

hence j is an isometry, and in particular injective. It remains to be shown, that
j is indeed surjective. Let 0 6= f ∈ H ′. Then ker(f) ( H is a closed subspace.
By Theorem 5.18, H = ker(f)⊕ (ker(f))⊥. Hence, we find y ∈ (ker(f))⊥, y 6= 0
and without loss of generality, we may assume f(y) = 1 (normalisation). Then
f(x)y − x ∈ ker(f), hence

0 = 〈f(x)y − x, y〉 = f(x)‖y‖2 − 〈x, y〉 ∀x ∈ H,

Put z = y
‖y‖2 ∈ H, then f = fz:

fz(x) = 〈x, y〉
‖y‖2

= f(x)∀x ∈ H.
�

Remark: In the proof of Theorem 5.20, dim(ker(f)⊥) = 1 holds.

Definition 5.22: A family (xi)i∈I in a normed space X is called summable with
value s :=

∑
i∈I xi ∈ X, if

∀ ε > 0 ∃ J0 ⊆fin I, |J0| <∞ : ∀ I ⊇fin J ⊇ J0 :
∥∥∥∑
i∈J

xi − s
∥∥∥ < ε.

If I is countable, this is the usual notion of series.

Remark 5.23: (i) If (xi)i∈I is summable, then only countably many elements
may be non-zero.

Proof: For ε = 1
n , we find Fn ⊆fin I, such that ∀ I ⊇fin J ⊇ Fn:∥∥∥∑

i∈J
xi − s

∥∥∥ < 1
n
.

The union F :=
⋃
n∈N Fn then is countable, hence for i ∈ I \ F , we have

‖xi‖ =
∥∥∥ ∑
j∈Fn∪{i}

xj −
∑
j∈Fn

xj

∥∥∥ ≤ ∥∥∥ ∑
j∈Fn∪{i}

xj − s
∥∥∥+

∥∥∥s− ∑
j∈Fn

xj

∥∥∥ < 2
n
∀n,

i. e., ‖xi‖ = 0. �

(ii) We may formulate summability in the following way: A family (xi)i∈I is
summable to s if and only if the net (sF )F⊆finI converges to s, where we put
sF :=

∑
i∈F xi.
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(iii) We have the following rules: For summable families (xi)i∈I , (yi)i∈I , it holds:

α
(∑
i∈I

xi

)
=
∑
i∈I

αxi
∑
i∈I

xi +
∑
i∈I

yi =
∑
i∈I

xi + yi

〈∑
i∈I

xi, y
〉

=
∑
i∈I
〈xi, yi〉.

Proof: For example, αs← α
∑
i∈I xi =

∑
i∈I αxi, furthermore the inner product

is continuous. �

(iv) We have seen in Lemma 1.30, that in a Banach space every sequence (xi)i∈I
is summable if and only if (‖xi‖)i∈I is summable. This can be shown for arbitrary
families (xi)i∈I .

Lemma 5.24: Let H be a Hilbert space and let (xi)i∈I be a family of pairwise or-
thogonal elements. Then (xi)i∈I is summable if and only if (‖xi‖2)i∈I is summable.

Proof: Put sF :=
∑
i∈F xi and tF :=

∑
i∈F ‖xi‖2 for F ⊆fin I. Hence, ‖sF ‖2 = tF

due to Lemma 5.14.
“⇒”: If sF → s, then ‖sF ‖2 → ‖s‖2 by the continuity of 〈·, ·〉.
“⇐”: (sF )F⊆finI is a Cauchy-net, i. e.,

∀ ε > 0 ∃F0 ⊆fin I ∀F,G ⊆fin I : F0 ⊆ F,G : ‖sF − sG‖ < ε.

Indeed: Let ε > 0 and F,G ⊆fin I such that F0 ⊆ F,G. Then

‖sF − sG‖2 =
∥∥∥ ∑
i∈F∪G

∥∥∥2
= ‖tF∪G − tF∩G‖ < ε.

Now, choose Fn ⊆fin I such that ‖sF − sG‖ < 1
n for F,G ⊇ Fn and Fn ⊆ Fn+1.

Then (sFn)n∈N is a Cauchy sequence. Hence, there is an s ∈ H such that sFn → s,
i. e., for F ⊇ Fn:

‖sF − s‖ ≤ ‖sF − sFn‖+ ‖sFn − s‖ < ε+ ε = 2ε �

Definition 5.25: A family (ei)i∈I in a Hilbert space is called orthonormal system,
if 〈ei, ej〉 = δi,j .

Lemma 5.26: Let (ei)i∈I be an orthonormal system in a Hilbert space H and let
x =

∑
i∈I αiei with αi ∈ C. Then αi = 〈x, ei〉 ∀ i ∈ I.

Proof: Let sF :=
∑
i∈F αiei for F ⊆fin I. Then 〈sF , ek〉 =

∑
i∈F αi〈ei, ek〉 = αk,

if k ∈ F . Hence
〈x, ek〉 ←− 〈sF , ek〉 = αk

for some F ⊆ I. �
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Theorem 5.27 (Bessel’s inequality): Let (ei)i∈I be an orthonormal system in H.
Then we have ∑

i∈I
|〈x, ei〉|2 ≤ ‖x‖2 ∀x ∈ H. (5.1)

In particular, (
∑
i∈F 〈x, ei〉ei)F⊆finI converges. We have equality in Eq. (5.1) if and

only if x =
∑
i∈I〈x, ei〉ei.

Proof: We prove Theorem 5.27 only for I = N (for arbitrary index sets, work with
techniques as in Lemma 5.26). Put sn :=

∑n
i=1〈x, ei〉ei. Then for 1 ≤ k ≤ n, it

holds

〈sn, ek〉 =
n∑
i=1
〈x, ei〉δi,k = 〈x, ek〉.

Hence 〈x− sn, ek〉 = 0 ∀ k ≤ n, i. e., 〈x− sn, sn〉 = 0. By (Lemma 5.14), we then
have

‖x‖2 = ‖x− sn‖2 + ‖sn‖2 ≥ ‖sn‖ =
∥∥∥ n∑
n=1
〈x, ei〉

∥∥∥ =
n∑
i=1
|〈x, ei〉|2.

Therefore, (
∑n
i=1|〈x, ei〉|2)n∈N converges and

∑
i∈N|〈x, ei〉|2 ≤ ‖x‖2. Finally, sn →

x holds if and only if ‖sn‖2 → ‖x‖2. “⇒” is true due to the continuity of ‖·‖ and
“⇐” is shown via ‖x‖2 = ‖x− sn‖2 + ‖sn‖2 → ‖x‖2. �

Theorem 5.28 (Parseval): Let (ei)i∈I be an othonormal system in H. Then the
following are equivalent:

(i) (ei)i∈I is a maximal orthonormal system (i. e., it is not included in a larger
orthonormal system),

(ii) x ⊥ ei ∀ i ∈ I ⇔ x = 0,
(iii) ∀x ∈ H : x =

∑
i∈I〈x, ei〉ei,

(iv) ∀x ∈ H : ‖x‖2 =
∑
i∈I |〈x, ei〉|2,

(v) The linear span 〈
∑N
i=1 αiei | αi ∈ C, N ∈ N〉 is dense in H.

If one (and thus all) of these conditions is satisfied by (ei)i∈I is called an orthonor-
mal basis.

Proof: “(i) ⇒ (ii)”: Let x 6= 0, x ⊥ ei ∀ i ∈ I, then (ei)i∈I ∪ { x
‖x‖} is a larger

orthonormal system.
“(ii) ⇒ (i)”: If (ei)i∈I ( (ei)i∈I′ , then there is ii ∈ I ′ \ I: ei0 ⊥ ei ∀ i ∈ I.
“(iii) ⇔ (iv)”: This is Theorem 5.27.
“(iii) ⇒ (ii)”: If 〈x, ei〉 = 0∀ i ∈ I, then x =

∑
i∈I〈x, ei〉ei = 0.

“(ii) ⇒ (iii)”: By Theorem 5.27, the series
∑
i∈I〈x, ei〉ei converges. Put

z := x−
∑
i∈I
〈x, ei〉ei.
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Then
〈z, ej〉 = 〈x, ej〉 −

∑
i∈I
〈x, ej〉〈ei, ej〉 = 0 ∀ j ∈ I,

but then z = 0.
“(iii) ⇒ (v)”: This is obvious.
“(v) ⇒ (iii)”: Let x ⊥ ei ∀ i ∈ I. Choose xn =

∑N
j=1 αj,nej → X as n → ∞.

Then

‖x‖2 ← ‖xn‖2 = 〈xn, xn〉 = |〈xn, xn − x〉| ≤ ‖xn‖‖xn − x‖ → 0. �

Remark 5.29: If (ei)i∈I is an orthonormal basis, then the elements ei are linear
independent: For a finite linear combination of these ei we have:

N∑
i=1

αiei = 0⇒ 0 =
〈 N∑
i=1

αiei, ej

〉
= αj ∀ j.

But an orthonormal base is no vector space base, since we might need infinite linear
combination as opposed to finite linear combinations.

Theorem 5.30: Let H be a Hilbert space, (ei)i∈I and (fj)j∈J two orthonormal bases.
Then |I| = |J | (i. e., an orthonormal base is not unique, but its cardinaility).

Proof: If |I| <∞, via Theorem 5.28 |J | <∞ and as we know from linear algebra,
we then know |I| = |J |.

If |I|, |J | =∞, then ∅ 6= Ij := {i ∈ I | 〈ei, fj〉 6= 0} is countable via Remark 5.23
(i). Furthermore, I =

⋃
j∈J Ij , hence |I| ≤ |J |. Because the same argument works

for J , then |J | ≤ |I|. The Theorem of Schroeder-Bernstein-Cantor now ensures
|I| = |J |. �

Theorem 5.31: Every Hilbert space H admits an orthonormal base.

Proof: Let (ei)i∈I be an orthonormal system in H. The set of orthonormal systems
containing (ei)i∈I is inductively ordered, hence by the Lemma of Zorn, there is a
maximal orthonormal system in H. �

Definition 5.32: Let H be a Hilbert space. The (Hilbert space) dimension dimH
is defined as the cardinality of an orthonormal base of H. If dimH is countable,
we call H separable.

Remark 5.33: Using the algorithm of Gram-Schmidt, we may show that a Hilbert
space is separable if and only if it is separable as a Banach space (i. e., it contains
a countable dense subset).
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Proof: “⇒”: Let (ei)i∈I be a countable orthonormal base of H. Then

{ N∑
j=1

xiei : N ∈ N, xj ∈ Q+ iQ
}
⊆ H

is dense and countable.
“⇐”: Let E ⊆ H be dense. Choose a sequence x1, x2, . . . of linearly independent

vectors, such that {xi : i ∈ I} is maximal linearly independent. Then the vectors
defined by

e1 := 1
‖x1‖

x1 , en+1 := 1
‖xn+1 −

∑n
i=1〈xi, ei〉ei‖

(
xn+1 −

n∑
i=1
〈xi, ei〉ei

)
where en+1 6= 0, because the xi were assumed to be linearly independent, form an
orthonormal base of H. �

Example 5.34: (i) Let H = Cn. Then dimCn = n. Note that in this case, the
vector space dimension and the Hilbert space dimension coincide.

(ii) Let H = `2. Then dim `2 = ∞ and `2 is separable with orthonormal base
(ei)i∈N, where ei := (δi,j)j∈N.

Definition 5.35: Let H,K be Hilbert spaces. An isomorphism between H and K is
a linear map

U : H −→ K

which is surjective and that satisfies

〈Ux,Uy〉 = 〈x, y〉 ∀x, y ∈ H.

Remark 5.36: An isomorphism U : H → K is injective, more precisely it is an
isometry since for all x ∈ H:

‖Ux‖ = 〈Ux,Ux〉 = 〈x, x〉 = ‖x‖.

Therefore, U preserves the whole Hilbert space structure.
If dimH = dimK < ∞, surjectivity is granted because linear maps between

vector spaces of the same finite dimension are surjective if and only if they are
injective. However if dimH = dimK =∞, we really need the surjectivity.

Theorem 5.37: Two Hilbert spaces H, K are isomorphic if and only they have the
same dimension.

Remark 5.38: If H is a separable complex Hilbert space, then H is isomorphic to
Cn or `2. Hence up to isomorphisms, there is only one infinitedimensional complex
separable Hilbert space. In fact L2[0, 1] ∼= `2 = L2(N).

More general, if H has an orthonormal base (ei)i∈I with an arbitrary index set
I then H ∼= `2(I).
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5 Hilbert spaces

Proof: “⇒”: Let U : H → K be an isomorphism and let (ei)i∈I be an orthonormal
base of H. Then (Uei)i∈I forms an orthonormal system in K. If now y ⊥ Uei for
all i ∈ I, then there is x ∈ H, such that Ux = y, hence

〈x, ei〉 = 〈Ux,Uei〉 = 0∀ i ∈ I,

so via the Parseval equality (Theorem 5.27), x = 0. Then, because U is linear,
y = 0. By Theorem 5.28, (Uei)i∈I is an orthonormal base of K.
“⇐”: Let (ei)i∈I be an orthonormal base of H and (fi)i∈I be an orthonormal

base of K. Put Uei := fi. This defines a linear isometry U : H → K. �

Example 5.39: (i) The Hilbert space Cn (with the standard inner product) has
the orthonormal base {e1, . . . , en}, where ei = (δi,j)1≤j≤n.

(ii) The Hilbert space `2 has the orthonormal base (ei)i∈I with ei = (δi,j)j∈N.
This is no vector space base of `2!

(iii) For an orthonormal base of L2([0, 1]) we will need the Theorem of Stone-
Weierstraß.
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6 Theorem of Stone-Weierstraß
We can approximate continuous functions f ∈ C([0, 1]) with simpler functions,
namely polynomials, with respect to ‖·‖∞.
For the proof of Stone-Weierstraß’ theorem, we only need little very algebraic

properties of {Polynomials with complex coefficients} = C[X] ⊆ C([0, 1]). Let K
be a compact metric space. Consider

C(K) := {f : K → C | f continuous}

endowed with ‖f‖∞ := supx∈K |f(x)|. Then (C(K), ‖·‖∞) is a Banach space.

Definition 6.1: A subset A ⊆ C(K) is called a ∗-subalgebra with unit (or unital
∗-subalgebra), if

(i) f, g ∈ A⇒ fg ∈ A,
(ii) f, g ∈ A,µ, λ ∈ C⇒ µf + λg ∈ A,

(iii) f ∈ A⇒ f ∈ A,
(iv) 1 ∈ A.

A is said to separate points, if for all s, t ∈ K, s 6= t, there is f ∈ A, such that
f(s) 6= f(t).

Example 6.2: The set

P := {Polynomials in X and X} ⊆ C([0, 1])

is a unital ∗-subalgebra seperating points. The same holds for

PR := {Polynomials in R} ⊆ CR([0, 1]) = {f : [0, 1]→ R | f continuous}.

Theorem 6.3 (Stone-Weierstraß): Let K be a compact space and A ⊆ C(K) be
a unital ∗-subalgebra, separating points. Then A ⊆ C(K) dense (with respect to
‖·‖∞). In particular: If A is closed, then A = C(K) holds.
The same holds true for the real case, i. e., for a unital ∗-subalgebra separating

points A ⊆ CR(K).

Proof: Let A ⊆ C([0, 1]) be a closed unital ∗-subalgebra separating points.
1© If f ∈ A, f ≥ 0 then

√
f ∈ A.

Proof (of 1©): Without loss of generality let 0 ≤ f ≤ 1 (normalisation!). Put
g := 1− f , then 0 ≤ g ≤ 1 aswell. It holds

√
f(t) =

√
1− g(t) = 1−

∞∑
n=1

ang
n(t) ∀ t ∈ K
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6 Theorem of Stone-Weierstraß

via the Taylor series expansion of g. This taylor series expansion converges uniformly
on [−1, 1], hence

A 3 hm :=
m∑
n=1

ang
n(x)→

√
f (with respect to ‖·‖∞).

Because A is closed via assumption, we then have that
√
f ∈ A. �

2© Let f, g ∈ A be real-valued. Then min{f, g},max{f, g} ∈ A.

Proof (of 2©): For f, g ∈ A we have the representations

min{f, g} = f + g − |f − g|
2 , max{f, g} = f + g + |f − g|

2 .

Both of those are elements of A, because |f | =
√
ff for any f ∈ A. �

3© For a real-valued f ∈ C(K) and ε > 0, there is g ∈ A : ‖f − g‖∞ < ε.

Proof (of 3©): For s, t ∈ K, s 6= t, there is fs,t ∈ A such that fs,t(s) = f(s),
fs,t(t) = f(t): Since A separates points, there is h ∈ A with h(s) 6= h(t). Put

fs,t(x) := f(t) + (f(s)− f(t))h(x)− h(t)
h(s)− h(t) .

Now put
Ut := {x ∈ K | fs,t(x) < f(x) + ε}.

Due to the openness of (fs,t − f)−1(ε,∞), those Ut are open, furthermore t ∈ Ut
holds. Thus the family (Ut)t∈K is an open cover of K. Because K is compact,
there are t1, . . . , tn, such that K =

⋃n
i=1 Uti . Put hs := min1≤i≤n fs,ti ∈ A and

put
Vs := {x ∈ K | hs(x) > f(x)− ε}.

Again, the Vs are open and (Vs)s∈K forms an open cover of K, thus there are
s1, . . . , sm ∈ K with K =

⋃m
j=1 Vsj . Now put g := max1≤j≤m hsj ∈ A. It holds

hsj < f + ε for all j, so g < f + ε and g > f − ε, i. e., ‖f − g‖∞ < ε. �

Let now f ∈ C(K) be an arbitrary continuous function. Via 3©, there exist
sequences (gn)n∈N, (hn)n∈N ⊆ A such that gn → Re(f), hn → Im(f), i. e.,

gn + ihn → f (with respect to ‖·‖∞)

and therefore, A ⊆ C(K) is dense. �

Corollary 6.4 (Theorem of Weierstraß): The algebra P of polynomials is dense in
CR([0, 1]).
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Remark 6.5: The space (P, ‖·‖∞) is no Banach space (refer to Sheet 5, Exercise
2). The completion is (C([0, 1]), ‖·‖∞).

Corollary 6.6: (i) The set of polynomials
∑N
n=−N anz

n for an ∈ C is dense in
C(S1), where z−n := zn for n > 0 and

S1 := {z ∈ C | |z| = 1}.

(ii) The set of functions en(t) := (
√

2π)−1eint for t ∈ [0, 2π] and n ∈ Z is an
orthonormal base of (L2([0, 2π]), λ).

(iii) It holds L2([0, 2π]) ∼= `2 as a Hilbert space, likewise L2([0, 1]) ∼= `2.

Proof: (i) The set{ N∑
n=−N

anz
n : an ∈ C, N ∈ N

}
⊆ C(S1)

is a unital ∗-subalgebra, seperating points (zn · zm = zn+m for n,m ∈ Z). Via
Theorem 6.3, this ∗-subalgebra is dense.

(ii) Put
Cper := {f : [0, 2π]→ C | f(0) = f(2π)}

and consider the mapping

Φ: Cper[0, 2π] −→ C(S1)
Φ(f)(eit) := f(t).

Then Φ is isometric, surjective and Φ(
√

2πen)(z) = zn, as

Φ(
√

2πen)(eit) =
√

2πen(t) = eint = (eit)n

with z = eit. Since Φ is linear, linear combinations of en are mapped to polynomials∑
n anz

n, therefore the linear combinations of en are dense in Cper[0, 2π] with
respect to ‖·‖∞. Since

‖f‖22 =
ˆ 2π

0
|f(t)|2 dt ≤

ˆ 2π

0
‖f‖∞ dt ≤ 2π‖f‖∞,

thus the linear combinations of the en are dense in Cper[0, 2π] with respect to ‖·‖2.
We have Cper[0, 2π] ⊆ C[0, 2π] ⊆ L2[0, 2π] dense with respect to ‖·‖2. It remains
to be shown, that (en)n∈Z are indeed an orthonormal system with respect to 〈·, ·〉
in L2[0, 2], as it then is an orthonormal base via Theorem 5.28 (v).

It holds

〈en, em〉 =
ˆ 2π

0
en(t)en(t) dt = 1

2π

ˆ 2π

0
ei(n−m)t dt = δn,m,

so (en)n∈Z is indeed an orthonormal base.
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6 Theorem of Stone-Weierstraß

(iii) (en)n∈Z is countable. �

Remark 6.7: If f ∈ C[0, 2π], then
∑
n∈Z cne

int is nothing but its Fourier series.
Hence the statement about (en)n∈Z being an orthonormal base is just Fourier
Analysis. But note: The approximation is only with respect to ‖·‖2 rather than
pointwise or uniformal approximations.
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7 Bounded operators on Hilbert
spaces

Reminder 7.1: Let H be a Hilbert space. Then

B(H) := {A : H → H linear, bounded}

is a normed vector space with the operator norm (refer to Definition 1.22, Proposi-
tion 1.23 and Theorem 1.26). This vector space is even a Banach space, because H
is a Banach space and furthermore an algebra via ST := S ◦ T . Finally, we have
‖ST‖ ≤ ‖S‖‖T‖.

Example 7.2: (i) Let H = Cn and e1, . . . , en be the canonical base of H, then
A ∈ B(Cn) is uniquely determined by (ai,j)1≤i,j≤n with Aei =

∑n
j=1 aj,iej . Hence

B(Cn) = Mn(C), the complex valued n× n-matrices.
(ii) Let H = L2([0, 1], λ) and k : [0, 1]× [0, 1]→ C continuous (or more general:

k ∈ L2([0, 1]× [0, 1], λ2), i. e.,
ˆ 1

0

ˆ 1

0
|k(s, t)|2 ds dt <∞.

Then K : L2[0, 1] → L2[0, 1], (Kf)(s) :=
´ 1

0 k(s, t)f(t) dt is a bounded linear
operator K ∈ B(L2[0, 1]), the integral operator with kernel k. K is bounded, as

‖Kf‖2 =
ˆ 1

0
|(Kf)(s)|2 ds =

ˆ 1

0

∣∣∣∣ˆ 1

0
k(s, t)f(t) dt

∣∣∣∣2 ds
= |〈k(s, ·), f〉|2

≤
ˆ 1

0
|k(s, t)|2 dt‖f‖2,

therefore ‖Kf‖2 ≤
´ 1

0
´ 1

0 |k(s, t)|2 ds dt‖f‖22 = ‖k‖22‖f‖22, therefore ‖K‖ ≤ ‖k‖22 or,
if k is continuous: ‖K‖ ≤ ‖k‖∞.
Our idea is: K has a “continuous matrix” (k(s, t))s,t∈[0,1]. Indeed, the above

calculation works for any measure space L2(X,µ), too, hence with X = {1, . . . , n},
µ({t}) = 1 and

ei :=
{

1 t = i,

0 else,

we have

Kei(s) =
n∑
t=1

k(s, t)ei(t) = k(s, i) =
n∑
j=1

k(j, i)ej(s).
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7 Bounded operators on Hilbert spaces

Reminder 7.3: Let E,F be normed spaces and T ∈ B(E,F ). Then there is exactly
one map T ′ ∈ B(F ′, E′) such that 〈x, Ty〉F ′×F = 〈T ′x, y〉E′×F ∀x ∈ F ′, y ∈ E and
‖T ′‖ = ‖T‖ (3.6).

If E,F are Hilbert spaces, then E′ ∼= E, F ′ ∼= F (Theorem 5.20). So, how does
T ′ look like, seen as an operator in B(F,E)?

Proposition 7.4: Let H,K be Hilbert spaces and A ∈ B(H,K). Then there is a
unique operator A∗ ∈ B(K,H) with 〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ H, y ∈ K.

Proof: Consider

f : H −→ C

x 7−→ 〈Ax, y〉.

Then f ∈ H ′, since f is linear and bounded:

|f(x)| = |〈Ax, y〉| ≤ ‖Ax‖‖y‖ ≤ ‖A‖‖x‖‖y‖,

so ‖f‖ ≤ ‖A‖‖y‖. By Theorem 5.20, we find zy ∈ H such that f = fzy , i. e.,
〈Ax, y〉 = 〈x, zy〉.
Put A∗y := zy, then A∗ is linear, because

〈x,A∗(λy1+µy2)〉 = 〈Ax, λy1+µy2〉 = λ〈Ax, y1〉+µ〈Ax, y2〉 = 〈x, λA∗y1+µA∗y2〉,

and A∗ is bounded, because ‖A∗y‖ = ‖zy‖ = ‖fzy‖ = ‖f‖ ≤ ‖A‖‖y‖, therefore
‖A∗‖ ≤ ‖A‖. �

Remark 7.5: A∗ is basically A′ : K ′ → H ′ and ‖A∗‖ = ‖A‖.

Proof: The diagramm

K
A∗ //

jK
��

H

jH
��

K ′
A′ // H ′

commutes, because

(A′jKx)(y) = (A′fx)(y) = fx(Ay) = 〈Ay, x〉 = 〈y,A∗x〉 = fA∗x(y) = (jHA∗x)(y),

so A′ ◦ jK = jH ◦A∗ and ‖A∗‖ = ‖j−1
H ◦A′ ◦ jK‖ = ‖A′‖ =‖A‖, using the results

Theorem 5.20 and Theorem 3.6. �

Proposition 7.6: The map ∗ : B(H)→ B(H) is

(i) antilinear, i. e., (µA+ νB)∗ = µA∗ + νB∗, µ, ν ∈ C,
(ii) isometric, i. e., ‖A∗‖ = ‖A‖,
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(iii) involutoric, i. e., A∗∗ = A,
(iv) it satisfies (AB)∗ = B∗A∗,
(v) and the C∗-condition: ‖A∗A‖ = ‖A‖2,
(vi) If A ∈ B(H) is invertible, then also A∗ is invertible and (A∗)−1 = (A−1)∗.

Proof: We notice, that “〈Ax, y〉 = 0∀x, y ∈ H ⇒ A = 0” (indeed: “〈Ax,Ax〉 =
0⇒ Ax = 0∀x ∈ H”), hence: If

〈Ax, y〉 = 〈Bx, y〉 ∀x, y ∈ H,

then A = B (because then 〈(A−B)x, y〉 = 0∀x, y). We may thus check (i), (iii),
(iv) directly:

〈A∗∗x, y〉 = 〈x,A∗y〉 = 〈Ax, y〉 ∀x, y ∈ H ⇒ A = A∗,

〈(AB)∗x, y〉 = 〈x,ABy〉 = 〈A∗x,By〉 = 〈B∗A∗x, y〉.

Ad (v): It holds ‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 = ‖A∗A‖‖x‖, hence ‖A‖2 ≤
‖A∗A‖, but ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2. (ii) was already shown in Remark 7.5. �

Example 7.7: (i) Let H = Cn and A = (ai,j)1≤i,j≤n ∈ Mn(C) = B(H). Then
A∗ = (ai,j)1≤i,j≤n, since

〈A∗ej , ei〉 = 〈ej , Aei〉 =
〈
ej ,

n∑
k=1

ak,iek

〉
=

n∑
k=1

ak,iδj,k = aj,i.

(ii) Let H = L2[0, 1] and K as in Example 7.2. Then K∗ is the integral operator
with kernel k∗(s, t) := k(s, t), since

〈K∗f, g〉 = 〈f,Kg〉 =
ˆ 1

0
f(t)Kg(t) dt

=
ˆ 1

0

ˆ 1

0
f(t)k(t, s) dt ds =

ˆ 1

0
(Kk∗f)(s)g(s) ds = 〈Kk∗f, g〉

Proposition 7.8: If A ∈ B(H), then ker(A) = im(A∗)⊥, ker(A)⊥ = im(A∗).

Proof: If x ∈ im(A∗)⊥, then for all y ∈ H : 〈x,A∗y〉 = 0 = 〈Ax, y〉 which holds if
and only if Ax = 0, i. e., x ∈ ker(A). Furthermore ker(A)⊥ = im(A∗)⊥⊥ = im(A∗)
via Sheet 6. �

Definition 7.9: (i) A ∈ B(H) is called selfadjoint (or hermitian) if A = A∗,
(ii) A ∈ B(H) is called normal if A∗A = AA∗,

(iii) U ∈ B(H) is called unitary, if U∗U = UU∗ = 1 := idH ∈ B(H),
(iv) V ∈ B(H) is called isometry, if V ∗V = 1,
(v) P ∈ B(H) is called (orthogonal) projection, if P = P ∗ = P 2.
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7 Bounded operators on Hilbert spaces

Remark 7.10: (i) It holds V ∗V = 1 if and only if

〈V x, V y〉 = 〈V ∗V x, y〉 = 〈x, y〉 ∀x, y ∈ H,

i. e., V is isometric in the previous sense.
(ii) U is unitary if and only if U is isometric and surjective, i. e., an isomorphism

of Hilbert spaces as defined in Definition 5.35.
(iii) If P is a projection in the sense of Definition 7.9 (v), there is a closed

subspace K ⊆ H, such that H = K ⊕K⊥ and P (x+ y) = x for x+ y ∈ K ⊕K⊥.
Conversely, if K ⊆ H is a closed subspace with P (x+ y) = x, then P = P ∗ = P 2

(see Sheet 7).

Remark 7.11: If A = A∗, then 〈Ax, x〉 ∈ R∀x ∈ H:

〈Ax, x〉 = 〈x,Ax〉 = 〈A∗x, x〉 = 〈Ax, x〉

and ‖A‖ = sup‖x‖=1{|〈Ax, x〉|}.
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8 Spectral values of bounded
operators

As motivation for this chapter: Let A ∈Mn(C) with A = A∗. Then A is equivalent
to the diagonal matrix of eigenvalues: A ∼ diag(λ1, . . . , λn), more precisely: There
is a unitary matrix U ∈Mn(C), such that UAU∗ = diag(λ1, . . . , λn).These matrices
are determined by their eigenvalues. How about general bounded operators?
Now consider for k ∈ L2([0, 1]× [0, 1]) the “Fredholm integral equation”

ˆ 1

0
k(s, t)f(t) dt−λf(s) = g(s)

for a given g and λ ∈ C. We want to find such an (or this? Is it unique?) f .
Abstractly speaking (in the situation of Example 7.2): What are solutions f of
Kf − λf = g? If (K − λ1) is invertible, f = (K − λ1)−1g is a solution to our
equation.
In finite dimensions A − λ1 is non-injective if and only if λ is an eigenvalue

(i. e., ∃x 6= 0 : Ax = λx). A − λ1 also is non-injective if and only if A − λ1 is
non-invertible as shown in any lecture on linear algebra. But if the involved spaces
are infinite dimensional, “T injective if and only if T surjective if and inly if T
invertible” do not hold.
We therefore have more possibilites to define a generalisation of eigenvalues.

This will lead to the notion of the spectrum.

Definition 8.1: Let A be a C-vector space.

(i) A is an algebra if there is a bilinear, associative multiplication on A that
satisfies λ(xy) = (λx)y = x(λy)∀x, y ∈ A, λ ∈ C.

(ii) A is a normed algebra if A is an algebra, that is a normed vector space with
‖xy‖ ≤ ‖x‖‖y‖.

(iii) A is a Banach algebra, if A is a complete, normed algebra.

Example 8.2: (i) (B(H), ‖·‖) is a Banach algebra, where H is a Hilbert space
(or a Banach space),

(ii) (C(K), ‖·‖∞) is Banach algebra, where K is a compact space.

Remark 8.3: The multiplication in a normed algebra is continuous (as in Re-
mark 1.18).

Definition 8.4: Let A be a unital Banach algebra and let x ∈ A. Then

(i) Sp(x) := {λ ∈ C | λ1− x is not invertible} ⊆ C is called the spectrum of x,
(ii) ρ(x) := C \ Sp(x) is called the resolvent set.
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8 Spectral values of bounded operators

Sp(x) is sometimes denoted σ(x) in literature on the topic.

Remark 8.5: If now A = B(H), then we may also define eigenvalues: Given an
operator T ∈ B(H), a complex number λ ∈ C is an eigenvalue of T , if there is a
0 6= x ∈ H such that Tx = λx.
The set σp(T ) := {Eigenvalues of T} ⊆ C is called the point spectrum and we

observe that if λ ∈ σp(T ), then (λ1− T ) is not injective and in particular (λ1− T )
is not invertible, hence we have σp(T ) ⊆ Sp(T ). Spectral values are generalised
eigenvalues.
There are examples for σp(T ) = Sp(T ), σp(T ) ( Sp(T ), σp(T ) = ∅ (but it

always holds Sp(T ) 6= ∅).

Example 8.6: Let X = C([1, 2]). Then B(X) is a Banach algebra with unit (refer
to Theorem 1.26 and Proposition 1.29). Consider

T : X −→ X

(Tf)(t) 7−→ tf(t),

then T ∈ B(X) with ‖T‖ = 2. We have that σp(T ) = ∅: If Tf = λf , then
tf(t) = λf(t)∀ t ∈ [1, 2], hence f(t) = 0 ∀ t 6= λ and due to the continuity of
f it holds f ≡ 0. In particular λ1 − T is injective for all λ ∈ [1, 2]. For the
surjectivity: First let λ ∈ [1, 2] and assume λ1 − T was surjective. Consider
g(t) ≡ 1∀ t ∈ [1, 2]. Due to the surjectivity of T , there was f ∈ C(X) such that
1 = g(t) = (λ1− T )f(t) = (λ1− t)f(t), but (λ− t)f(t) = 0 for t = λ.

Now let λ /∈ [1, 2]. Then (λ1 − T )−1 is given by ((λ1 − T )−1f)(t) = 1
λ−tf(t),

hence in this case Sp(T ) = [1, 2].
So our T has no eigenvalues, but many spectral values.

Lemma 8.7: Let A be a unital Banach algebra.

(i) If x ∈ A with ‖1− x‖ < 1, then x is invertible and x−1 =
∑∞
n=0(1− x)n.

(ii) If x is invertible and y ∈ A with ‖x− y‖ < (‖x−1‖)−1, then y is invertible.
(iii) GL(A) := {x ∈ A | x is invertible} is open, and

GL(A) −→ GL(A)
x 7−→ x−1

is continuous.

Proof: (i) For z := 1− x, we have that ‖z‖ < 1, hence
∑∞
n=0‖z‖n is abosolute

convergent (‖zn‖ ≤ ‖z‖n via the submultiplicativity), hence it is also convergent
via Lemma 1.30. Moreover:

x

∞∑
n=0

zn ← (1− z)
N∑
n=0

zn =
N∑
n=0

zn −
N+1∑
n=1

zn = 1− zN+1 → 1

since ‖z‖ ≤ 1.
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(ii) It holds that

‖1− yx−1‖ = ‖(x− y)x−1‖ ≤ ‖x− y‖‖x−1‖ < 1,

i. e., yx−1 is invertible and thus y is invertible.
(iii) For ‖x− y‖ < ε < (‖x−1‖)−1, we have B(x, ε) ⊆ GL(A) for x ∈ GL(A) by

(ii). Now let xλ → x with xλ, x ∈ GL(A). Then ‖xλ − x‖ < (2‖x−1‖)−1ε for λ
large and 0 < ε < 1. Hence

‖1− xλx−1‖ = ‖(x− xλx−1‖ ≤ ε

2 < 1,

thus via (i), xλx−1 is invertible with

xx−1
λ = (xλx−1)−1 =

∞∑
n=0

(1− xλx−1)n = 1 +
∞∑
n=1

(1− xλx−1)n,

hence

‖x−1
λ − x

−1‖ = ‖x−1(xx−1
λ − 1)‖ ≤ ‖x−1‖

∞∑
n=1
‖1− xλx−1‖n

≤ ‖x−1‖
∞∑
n=1

ε
1
2n < ε‖x−1‖. �

Proposition 8.8: Let A be a unital Banach algebra and let x ∈ A. Then Sp(x) is
compact and

Sp(x) ⊆ {λ ∈ C | |λ| ≤ ‖x‖}.

Proof: Firstly, we notice that the resolvent set ρ(x) can be written as ρ(x) =
f−1
x (GL(A)), where fx : C→ A, λ 7→ λ1− x is continuous. Via Lemma 8.7, ρ(x) is
open and Sp(x) is closed.

Secondly, if |λ| ≥ ‖x‖, then λ− x = λ(1− x
λ ) is invertible via Lemma 8.7, since

|λ|−1‖x‖ < 1, hence λ /∈ Sp(x) and therefore Sp(x) ⊆ {λ ∈ C | |λ| ≤ ‖x‖} is
bounded. �

Theorem 8.9: If A is a unital Banach algebra, then Sp(x) 6= ∅ for all x ∈ A.

Proof: Let x ∈ A. For λ ∈ ρ(x), put Rλ(x) := (λ− x)−1.
1© We have Rλ(x)−Rµ(x) = (µ− λ)Rλ(x)Rµ(x)∀λ, µ ∈ C.

Proof (of 1©): It holds that

Rλ(x)−Rµ(x) = Rλ(x)Rµ(x)(µ− x)− (λ− x)Rλ(x)Rµ(x)
= (µ− λ)Rλ(x)Rµ(x),

where we used Rλ(x)Rµ(x)(µ− x) = (µ− x)Rλ(x)Rµ(x). In principle ab 6= ba for
a, b ∈ A, but here this doesn’t cause issues because

(λ− x)(µ− x) = (µ− x)(λ− x) =⇒ (µ− x)Rλ(x). �
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8 Spectral values of bounded operators

2© Assume that x is invertible and let f ∈ A′ such that f(x−1) 6= 0. Then
g : ρ(x)→ C, g(λ) := f(Rλ(x)) is holomorphic and g(0) 6= 0.

Proof (of 2©): Consider

g(λ)− g(µ)
λ− µ

= f

(
Rλ(x)−Rµ(x)

λ− µ

)
1©= −f(Rλ(x)Rµ(x))→ −f(R2

λ(x)) as µ→ λ

where we used, that x 7→ x−1 is continuous and therefore µ 7→ Rµ(x) is continuous
aswell. Thus g is holomorphic with g(0) = f(R0(x)) = −f(x−1) 6= 0. �

Assume, that Sp(x) = ∅. Then 0 /∈ Sp(x), i. e., 0 − x is invertible and x is
invertible. By the Theorem of Hahn-Banach Corollary 2.6, we find a functional
f ∈ A′ with f(x−1) 6= 0. Thus the function g from 2© is a whole function.

3© g is bounded, because g(λ)→ 0 for λ→∞.

Proof (of 3©): Put z := 1− λ−1x. Then ‖1− z‖ = |λ|−1‖x‖ < 1 for |λ| large. Via
Lemma 8.7 (i), z is invertible with z−1 =

∑∞
n=0(1− z)n, hence

‖z−1‖ ≤
∞∑
n=0
‖1− z‖n = (1− ‖1− z‖)−1

and thus
‖(1− λ−1x)−1‖ ≤ 1

1− ‖x‖|λ|
.

Finally, it holds

‖Rλ(x)‖ = ‖(λ− x)−1‖ = |λ|−1‖(1− λ−1x)−1‖

≤ 1
|λ|(1− ‖x‖|λ| )

= 1
|λ| − ‖x‖

→ 0 as |λ| → ∞. �

We conclude that by Liouville’s Theorem g is constant and from g(λ) → 0 as
|λ| → 0, we infer that g ≡ 0, which contradicts g(0) 6= 0. �

Definition 8.10: Let A be a unital Banach algebra and let x ∈ A. Then

r(x) := sup{|λ| | λ ∈ Sp(x)}

is called the spectral radius of x.

Remark 8.11: From Theorem 8.9 we already know that r(x) ≤ ‖x‖.

Example 8.12: We may have r(x) < ‖x‖: For instance with A := M2(C) and
x := ( 0 1

0 0 ). Then λ − x = ( λ −1
0 λ

) is invertible for all λ 6= 0, thus Sp(x) = {0}.
Hence r(x) = 0, but ‖x‖ 6= 0.
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Theorem 8.13: Let A be a unital Banach algebra and x ∈ A. Then

r(x) = lim
n→∞

n
√
‖xn‖.

Proof: If λ ∈ Sp(x), then λn ∈ Sp(xn): From Analysis I, we know of the handy
formula

λn − xn = (λ− x)(λn−1 + λn−2x+ · · ·+ λxn−2 + xn−1).

If |λn| ≤ ‖xn‖, then |λ| ≤ n
√
‖xn‖ and thus r(x) ≤ lim infn→∞ n

√
‖xn‖. We

need to show, that r(x) ≥ lim supn→∞ n
√
‖xn‖. Consider

Rz(x) := (z − x)−1 =
∞∑
n=0

xn

zn+1

for ‖x‖ ≤ |z| (in particular z ∈ ρ(x)).
If this was a series in C (rather than A), its radius of convergence of this power

series was lim supn→∞ n
√
‖xn‖. Since it is a series in A, we have to use the same

trick as in the proof of Theorem 8.9. Let f ∈ A′. Like in the proof of Theorem 8.9,
the function g : ρ(x) → C, z 7→ f(Rz(x)) is holomorphic and g(z) =

∑∞
n=0

f(xn)
zn+1

for |z| > ‖x‖, in fact even for |z| > r(x). Hence

lim sup
n→∞

|f(x)| 1n ≤ r(x)

by the formula of Cauchy Hadamard for convergence radii of power series. For
r > r(x), we thus find an N ∈ N such that |f(xn)| 1n < r ∀n ≥ N and hence

sup
n∈N

∣∣∣∣f(xn)
rn

∣∣∣∣ <∞
for all f ∈ A′. By the principle of uniform boundedness Theorem 4.4, we see that
{x

n

rn | n ∈ N} is bounded. Hence there is C > 0 such that ‖xn‖ ≤ Crn hence
‖xn‖ 1

n ≤ C 1
n r, which implies lim supn→∞‖xn‖

1
n ≤ r ∀ r ≥ r(x) and thus

lim sup
n→∞

‖xn‖ 1
n ≤ r(x).

�
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9 Compact operators and their
spectral theorem

Remark 9.1: Let E be a normed vector space. Then the following are equivalent:

(i) E is finite-dimensional,
(ii) {x ∈ E | ‖x‖ ≤ 1} is compact.

If now dimH = ∞, then A({x ∈ H | ‖x‖ ≤ 1}) ⊆ H might be noncompact
for some A ∈ B(H) (for instance for A = idH). This makes spectral theory for
A ∈ B(H) much more complicated. Hence we first consider operators, which are
in a way “close” to the finite setting.
We want a spectral theorem similar to the one in Linear Algebra:

Theorem: Let H be a Hilbert space with dim(H) < ∞ and let A ∈ Mn(C) be
normal. Then there is a unitary U ∈Mn(C) such that

UAU∗ = diag(λ1, . . . , λn),

where Sp(A) = σP (A) = {λi | 1 ≤ i ≤ n}.

We will show such a theorem for compact operators A ∈ K(H) first.

Definition 9.2: Let X,Y be Banach spaces. A linear operator T : X → Y is called
compact, if {Tx | ‖x‖ ≤ 1} is compact. We write

K(X,Y ) := {T : X → Y linear, compact} K(X) := K(X,X).

Remark 9.3: (i) We have K(X,Y ) ⊆ B(X,Y ). Indeed, since {Tx | ‖x‖ ≤ 1} is
bounded, we find a constant C such that ‖Tx‖ ≤ C for all ‖x‖ ≤ 1.

(ii) T is compact if and only if TM is compact for all bounded sets M ⊆ X.

Proof: “⇐”: M = {x | ‖x‖ ≤ 1} is bounded.
“⇒”: IfM is bounded, then there is a constant C such that 1

CM ⊆ {x | ‖x‖ ≤ 1}
and thus TM ⊆ C{Tx | ‖x‖ ≤ 1}. �

(iii) T is compact if and only if for any bounded sequence (xn)n∈N the sequence
(Txn)n∈N possesses a convergent subsequence.

Proof: “⇒”: Let (xn)n∈N be bounded and without loss of generality let ‖xn‖ ≤ 1
for all n ∈ N. Then

{Txn | n ∈ N} ⊆ {Tx | ‖x‖ ≤ 1}
is a compact subset. Therefore, (Txn)n∈N has a convergent subsequence.

“⇐”: Let (Txn)n∈N ⊆ {Tx | ‖x‖ ≤ 1}. Then (Txn)n∈N has a convergent subse-
quence by assumption. �
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Definition 9.4: A (twosided) ideal in an algebra A is a linear subspace I ⊆ A, such
that AI, IA ⊆ I. If A is a Banach algebra and I is closed, we write I / A.

Theorem 9.5: Let X be a Banach space. Then K(X) / B(X).

Proof: First, we want to show that K(X) is a linear subspace. In order to show
this, let S, T ∈ K(X) and M ⊆ X be bounded. Then

(S + T )M ⊆ SM + ST

is compact, because “+” is continuous.
Let now S ∈ K(X), T ∈ B(X) and M ⊆ X be bounded.
“K(X)B(X) ⊆ K(X)”: TM is bounded (since T is bounded) and therefore,

S(TM) is compact, thus ST ∈ K(T ).
“B(X)K(X) ⊆ K(X)”: It holds that TS(M) ⊆ T (SM), thus

TS(M) ⊆ T (SM) = T (SM),

because SM is compact and T is continuous. Hence, TS(M) is compact.
It remains to be shown, that K(X) is closed. Let (Tn)n∈N ⊆ K(X) be a sequence

with Tn → T ∈ B(X) (with respect to the operator norm). Let (xn)n∈N ⊆ X
be bounded. If (Txn)n∈N admits a convergent subsequence, we know that T is
compact.

(i) Construction of a subsequence (yk)k∈N of (xn)n∈N: Since T1 is compact, we
find a subsequence (x(1)

k )k∈N, such that (T1x
(1)
k )k∈N converges. Inductively, choose a

subsequence (x(n+1)
k )k∈N of (x(n)

k )k∈N such that (Tn+1x
(n+1)
k )k∈N converges. Since

(x(n)
k )k∈N is a subsequence of (x(m)

k )k∈N when m < n, we know that (Tmx(n)
k )k∈N

converges, too. We therefore put yk := x
(k)
k .

(ii) The constructed sequence (yk)k∈N converges: Let ε > 0, n0 ∈ N such that
‖T − Tn0‖ < ε (which is possible since by assumption Tn → T ). Put

M := sup
k∈N
‖yk‖ <∞;

this is well-defined, since (yk) ⊆ (xn) is bounded. Let N ∈ N such that ‖Tn0yk −
Tn0yl‖ < ε for all k, l ≥ N ( (yk)k∈N is a subsequence of (x(n0)

k )k∈N up to finitely
many entries, hence (Tn0yk)k∈N converges). Then, for k, l ≥ N :

‖Tyk − Tyl‖ ≤ ‖Tyk − Tn0yk‖+ ‖Tn0yk − Tn0yl‖+ ‖Tn0yl − Tyl‖
< εM + ε+ εM < 3Mε

Hence (Tyk) is Cauchy and thus converges. �
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9 Compact operators and their spectral theorem

Definition 9.6: An operator T : X → X is of finite rank, if TX is finite-dimensional.
We put

E(X) := {T ∈ B(X) | T of finite rank}

Remark 9.7: (i) If T ∈ E(X), then T ∈ K(X) since

{Tx | ‖x‖ ≤ 1} ⊆ {y ∈ TX | ‖y‖ ≤ C}

is compact via Remark 9.1 and Definition 9.2.
(ii) id : X → X is compact if and only if X is finite-dimensional (“⇐”: (i), “⇒”:

Definition 9.2 ).
(iii) As in Theorem 9.5, one can show that E(X) ⊆ B(X) is a two-sided ideal,

in general not closed. Also, E(X) ⊆ K(X).

Theorem 9.8: Let H be a separable Hilbert space. Then E(H) = K(H).

This theorem is wrong for general Banach spaces, which was shown by Enflo in
1973.

Proof: “⊆” holds in general. We now need to show “⊇”: Let T ∈ K(H) and let
(en)n∈N be an orthonormal base of H – without loss of generality, dim(H) =∞.
Consider Hn := 〈e1, . . . , en〉 and let Pn ∈ B(H) be the orthogonal projection
onto Hn (refer to sheet 8). Put Tn := PnT ∈ E(H). We need to show, that
‖Tn − T‖ → 0. Let x ∈ H. Then we have

Tn(x) = Pn(Tx) =
n∑
k=1
〈Tx, ek〉ek →

∞∑
i=1
〈Tx, ek〉ek

via Theorem 5.28. This shows that ‖Tnx − Tx‖ → 0 for all x ∈ H. Let ε > 0.
Since T is compact, we have that {Tx | ‖x‖ ≤ 1} ⊆

⋃m
j=1B(Txj , ε) for finitely

many x1, . . . , xm with ‖xi‖ ≤ 1. Choose N ∈ N such that ‖Txj − Tnxj‖ < ε for
n ≥ N and for all 1 ≤ j ≤ m. Then, for arbitrary x ∈ H with ‖x‖ ≤ 1 it holds
that ‖Tx− Txj‖ < ε.
Let x ∈ H with ‖x‖ ≤ 1. Then

‖Tx− Tnx‖ ≤ ‖Tx− Txj‖+ ‖Txj − Tnxj‖+ ‖Tnxj − Tnx‖
≤ ε+ ε+ ‖Pn‖‖Txj − Tx‖ < 3ε,

thus ‖T − Tn‖ < ε. �

Remark 9.9: We proved that any T ∈ B(H) may be approximated by a sequence
(Tn)n∈N ⊆ E(H) in the strong operator topology: ∀x ∈ H with ‖x‖ ≤ 1 :
‖Tnx − Tx‖ → 0. But for the norm topology, this approximation only holds for
T ∈ K(H): ‖Tn − T‖ → 0.

64



Theorem 9.10: Let H be a Hilbert space and T ∈ B(H). Then T is compact if and
only if T ∗ is compact.

Proof: “⇒”: Let T ∈ K(H) be given. By Theorem 9.8, we find a sequence
(Tn)n∈N ⊆ E(H) with Tn → T . Then

‖T ∗n − T ∗‖ = ‖Tn − T‖ → 0,

hence T ∗n → T ∗ and T ∗n = (PnT )∗ = T ∗Pn = T ∗Pn ∈ E(H). Theorem 9.8 does the
job for us now.
“⇐”: It holds T ∗∗ = T , then use the first part. �

Remark 9.11: Let X,Y be Banach spaces, T ∈ K(X,Y ). Then T ′ ∈ K(Y ′, X ′)
is compact as well. This proves Theorem 9.10 for Banach spaces, since we can
express T ∗ = j−1 ◦ T ′ ◦ j.

Example 9.12: (i) If dimH < ∞, then K(H) = B(H). In particular it holds
E(Cn) = K(Cn) = B(Cn) = Mn(C).

(ii) If H = L2([0, 1]) with k ∈ L2([0, 1] × [0, 1]) and K ∈ B(L2([0, 1])) as in
Example 7.2, then K ∈ K(L2([0, 1])).

Proof: Let (en)n∈N be an orthonormal base of L2([0, 1]). Check that

en,m(s, t) := en(s)em(t)

is an orthonormal base of L2([0, 1]× [0, 1]). For

k =
∞∑

n,m=1
αn,men,m,

put kN :=
∑N
n,m=1 αn,men,m. Hence ‖k − kN‖2 → 0 as N → ∞. For KN , the

integral operator with respect to kN , we have that K −KN the integral operator
with respect to k − kN . Hence

‖K −KN‖ ≤ ‖k − kN‖2 −→ 0,

i. e., KN → K. KN has finite rank as

(KNf)(s) =
ˆ 1

0
kN (s, t)f(t) dt =

N∑
n,m=1

αn,m

ˆ 1

0
en(s)em(t)f(t) dt

=
N∑
n=1

en(s)
( N∑
m=1

αn,m〈f, em〉
)
,

thus KNf ∈ 〈e1, . . . , en〉 for all f . �
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9 Compact operators and their spectral theorem

Theorem 9.13 (Spectral theorem for selfadjoint compact operators): Let H be a
separable Hilbert space and let T ∈ K(T ) with T = T ∗.

(i) If λ ∈ σp(T ), λ 6= 0, then the eigenspace ker(λ− T ) is finite-dimensional.1

(ii) If λ /∈ σp(T ), λ 6= 0, then λ /∈ Sp(T ) and σp(T ) ⊆ R.
(iii) The operator T has only countably many mutually different eigenvalues

{λ1, λ2, . . . }

and the corresponding eigenspaces for λi 6= 0 are orthogonal to each other
and are finite-dimensional. All eigenvalues are real and

Sp(T ) ⊆ {0} ∪ {λ1, λ2, . . . }

We may decompose

T =
∞∑
n=1

λnPn

and call T a diagonal operator.

Proof: (i) Let (ei)i∈I be an orthonormal base of ker(λ− T ). Then for i 6= j it
holds

‖Tei − Tej‖2 = ‖λei − λej‖2 = 2|λ|2.

If |I| =∞, then (Tei)i∈I has no convergent subsequence which is a contradiction
to the compactness.

(ii) We need to show, that im(λ− T ) = H. In this case, λ− T is surjective and
injective, hence invertible and λ /∈ Sp(T ).

(ii.1) It holds σp(T ) ⊆ R.

Proof (of (ii.1)): For λ ∈ σp(T ) and x 6= 0 with Tx = λx we have

λ〈x, x〉 = 〈x, λx〉 = 〈x, Tx〉 = 〈Tx, x〉 = 〈λx, x〉 = λ〈x, x〉. �

(ii.2) For a sequence (xn)n∈N ⊆ H with ‖xn‖ and ‖Txn − ξxn‖ → 0, ξ 6= 0, it
holds that ξ ∈ σp(T ).

Proof (of (ii.2)): As T is compact, we can find a subsequence (xnk)k∈N such that
Txnk → y ∈ H as k → ∞. Hence: ξxnk = Txnk − (Txnk − ξxnk) → y and
therefore xnk → ξ−1y. But then ξy ← ξ(Txnk) = T (ξxnk)→ Ty and y 6= 0 since
1 ≡ ‖xnk‖ →|ξ|−1‖y‖ implies that ‖y‖ = |ξ| 6= 0. �

(ii.3) It holds im(λ− T ) = im(λ− T ).
1This holds for all compact operators on separable Hilbert spaces.
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Proof (of (ii.3)): By (ii.2) there is c > 0 such that ‖Tx−λx‖ ≥ c‖x‖ for all x ∈ H;
use ‖x‖−1x. Let y ∈ im(λ− T ) i. e., we have xn ∈ H with λxn − Txn → y. Then

‖xn − xm‖
(ii.2)
≤ 1

c
‖T (xn − xm)− λ(xn − xm)‖ → 0

Thus (xn)n∈N is a Cauchy sequence, we thus have xn → x for some x ∈ H and
y ← λxn − Txn → (λ− T )x ∈ im(λ− T ). �

Finally, we have

im(λ− T ) = im(λ− T ) = ker((λ− T )∗)⊥ = ker(λ− T )⊥ = ker(λ− T )⊥ = H

as λ /∈ σp(T ).
(iii) (iii.1) There is λ1 ∈ σp(T ) with λ1 ∈ R such that |λ1| = ‖T‖.

Proof (of (iii.1)): By sheet 8, we have that ‖T‖ = sup{|〈Tx, x〉 | ‖x‖ = 1}, hence
we find (xn) ⊆ H, ‖xn‖ = 1 with |〈Txn, xn〉| → ‖T‖. We know 〈Txn, xn〉 ∈ R by
(Remark 7.11), hence without loss of generality 〈Txn, xn〉 → λ1 := ±‖T‖. Then

‖(T − λ1)xn‖2 = ‖Txn‖2 − 2λ1〈Txn, xn〉+ λ2
1 ≤ λ2

1 − 2λ1〈Txn, xn〉+ λ2
1

≤ 2λ1(λ1 − 〈Txn, xn〉)→ 0

By (ii.2) it holds λ1 ∈ σp(T ). �

(iii.2) Put H1 := ker(λ − T ) and P1 the projection onto H1. Decompose H =
H1 ⊕H⊥1 . Then TH1 ⊆ H1, TH⊥1 ⊆ H⊥1 , because if x ∈ H1, then Tx = λ1x ∈ H1
and if x ∈ H⊥1 , then for y ∈ H1 it holds 〈Tx, y〉 = λ1〈x, y〉 = 0, thus x ∈ H⊥1 .

Hence T = λ11⊕ T2 = ( λ11
T2

) ∈ B(H1⊕H⊥q ). Now put T2 := T |H⊥1 ∈ K(H⊥1 ),
then T ∗2 = T2. By (iii.1) we find λ2 6= λ1 such that |λ2| ≤ |λ1| with H2 :=
ker(λ2 − T2) = ker(λ2 − T ).

(iii.3) Inductively we find a sequence (λn)n∈N ⊆ R with λn ∈ σp(T ) for all n with
Hn := ker(λn−T ). The Hn are mutually orthogonal as we have for x ∈ ker(λn−T ),
y ∈ ker(λm − T ):

λn〈x, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = λm〈x, y〉

and thus 〈x, y〉 = 0 must hold.
(iii.4) It holds λn → 0.

Proof (of (iii.4)): As |λ1| ≥ |λ2| ≥ . . . , there is α ≥ 0 with |λn| → α. For xn ∈ Hn

with ‖xn‖, we find a convergent subsequence of (Txn)n∈N as T is compact. Now it
holds

‖Txn − Txm‖2 = ‖λnxn − λmxm‖2 = |λn|2 + |λm|2 ≥ 2α2

and thus α = 0. �
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9 Compact operators and their spectral theorem

(iii.5) It holds
∑N
n=1 λnPn → T where Pn denotes the projection onto Hn =

ker(λn − T ).

Proof (of (iii.5)): Let x ∈ H. Then we can decompose

x = x0 + x1 ∈ (H1 ⊕ · · · ⊕HN )⊕ (H1 ⊕ · · · ⊕HN )⊥

and denote H ′ := (H1 ⊕ · · · ⊕HN )⊥

∥∥∥(T − N∑
n=1

λnPn

)
x
∥∥∥ = ‖Tx1‖ ≤ ‖T |H′‖ ≤ |λn+1|‖x‖ → 0.

�

Of course, for Banach spaces we can’t hope for a perfect analogon of the theorem
for Hilbert spaces, as we don’t have the orthogonal decomposition at hand. However,
there is a generalisation of the spectral theorem of compact operators on Hilbert
spaces:

Theorem 9.14 (Spectral theorem for compact operators on Banach spaces): Let X
be a Banach space, T ∈ K(X). Then the following hold:

(i) Sp(T ) has at most countable many elements and 0 is the only cluster point.
If X is infinite-dimensional, then 0 ∈ Sp(T ).

(ii) If 0 6= λ ∈ Sp(T ), then λ ∈ σp(T ) and dim(ker(λ− T )) <∞.
(iii) For 0 6= λ ∈ Sp(T ), there is a composition X = Nλ ⊕ Fλ (as described in

(Remark 5.19)) such that ker(λ − T ) ⊆ Nλ, (λ − T )|Nλ is nilpotent and if
0 6= µ ∈ Sp(T ) with λ 6= µ, then Nλ ⊆ Fµ.
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10 Banach- and C∗-algebras and the
Gelfand transformation

Definition 10.1: Let A be a normed C-vector space.

(i) A is called a normed algebra, if A is an algebra such that ‖xy‖ ≤ ‖x‖‖y‖ for
all x, y ∈ A.

(ii) A is called a Banach algebra, if A is a complete normed algebra.
(iii) An involution on an algebra is a map ∗ : A→ A with

(1) (a+ b)∗ = a∗ + b∗, (λa)∗ = λa∗ for a, b ∈ A and λ ∈ C,
(2) (ab)∗ = b∗a∗,
(3) a∗∗ = a.

(iv) A ∗-Banach algebra is a Banach algebra with an involution.
(v) A C∗-algeba1 is a ∗-Banach algebra such that ‖x∗x‖ = ‖x‖2 for all x ∈ A.
(vi) A(n) algebra / Banach algebra / C∗-algebra is called commutative, if it holds

xy = yx for all x, y ∈ A. It is called unital, if 1 ∈ A.
(vii) Let A,B be Banach algebras. A map ϕ : A → B is called (algebra) ho-

momorphism, if it is linear and multiplicative: ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ A.
If A and B are ∗-Banach algebras and if we have ϕ(a∗) = ϕ(a)∗ for all

a ∈ A, we call ϕ a ∗-homomorphism.
If ‖ϕ(a)‖ = ‖a‖, we call ϕ isometric.

Example 10.2: (i) Let H be a Hilbert space. Then B(H) is a unital C∗-algebra
(see Proposition 7.6). If H is finite-dimensional, then Mn(C) is a unital C∗-algebra
via (ai,j)∗ = (aj,i).

(ii) Let X be a compact topological space, then (C(X), ‖·‖∞) is a unital com-
mutative C∗-algebra via f∗(t) := f(t).

Remark 10.3: (i) An involution is bijective: “∗−1 = ∗”
(ii) If A is a unital ∗-Banach algebra, then 1∗ = 1, because it holds

1∗x = (x∗1)∗ = x∗∗ = x.

If A is a unital C∗-algebra, then ‖1‖ = 1, because it holds

‖1‖2 = ‖1∗1‖ = ‖1 · 1‖ = ‖1‖.

Because A 6= {0}, it holds ‖1‖ = 1.
1First introduced by Gelfand in 1943.
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10 Banach- and C∗-algebras and the Gelfand transformation

(iii) It holds (x−1)∗ = (x∗)−1, because (x−1)∗x∗ = (xx−1)∗ = 1.
(iv) It holds Sp(x∗) = {λ | λ ∈ Sp(x)}, because λ− x is invertible if and only if

(λ− x)∗ is invertible.
(v) If A is a C∗-algebra, then the involution is isometric, i. e., ‖x∗‖ = ‖x‖,

because

‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖‖x‖ ⇒ ‖x‖ ≤ ‖x∗‖ ⇒ ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖.

(vi) If A is a unital Banach algebra and x ∈ A, then

r(x) := sup{|λ| | λ ∈ Sp(x)} ≤ ‖x‖

is the spectral radius of x. We have the formula r(x) = limn→∞
n
√
‖xn‖ (see

Theorem 8.13). If now A is a unital C∗-algebra and if x is normal (i. e., x∗x = xx∗),
then r(x) = ‖x‖.

Proof: We have

‖x2‖2 = ‖(x2)∗x2‖ = ‖x∗x∗xx‖ = ‖x∗xx∗x‖ = ‖(x∗x)∗(x∗x)‖ = ‖x∗x‖2 = ‖x‖4,

thus ‖x‖2 = ‖x2‖. Inductively, we see that ‖x2n‖ = ‖x‖2n , hence

r(x) = lim
n→∞

2n
√
‖x2n‖ = ‖x‖. �

Definition 10.4: (i) A non-commutative monomial in x1, . . . , xn is an expression
of the form

xk1
i1
xk2
i2
· · ·xkmim

with kj ∈ N, ij ∈ {1, . . . , n}. Note that in general x1x2 6= x2x1! A non-
commutative polynomial is a C-linear combination of non-commutative mono-
mials.

(ii) A non-commutative monomial in x and x∗ is of the form

xk1x∗
k2
xk3x∗

k4 · · ·xkm ,

a non-commutative polynomial in x and x∗ is defined standing to reason.

Remark 10.5: If x is normal, then any non-commutative monomial is of the form
xkx∗

l with k, l ∈ N0 (rather than xk1x∗
k2
. . . ). Also, the algebra of polynomials in

x and x∗ is commutative in this case.

Theorem 10.6 (Gelfand-Mazur): If A is a (not necessarily commutative) unital
Banach algebra, which is also a skew field.2 Then A ∼= C (as an algebra).

2The german term for skew field is “Schiefkörper”. A skew field is an algebra in which every
element is invertible.
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Proof: Let x ∈ A. Then Sp(x) 6= ∅ (refer to Theorem 8.9), i. e., we find a λ ∈ Sp(x)
and hence λ1− x is not invertible. Then λ1− x = 0, i. e., x = λ1 ∈ C1. �

Definition 10.7: Let A be an algebra. A (two-sided) ideal I 6= A is called maximal,
if for every ideal I ⊆ J ⊂ A it holds, that I = J or J = A.

Proposition 10.8: Let A be a Banach algebra.

(i) If I / A is a closed (two-sided) ideal, then A/I is a Banach algebra.
(ii) If I ⊆ A is a (not necessarily closed, two-sided) ideal, then also I ⊆ A is a

(two-sided) ideal.
(iii) If I ⊆ A is a(n) (two-sided) ideal and if A is a unital Banach algebra, then

the following are equivalent:
(1) I = A,
(2) 1 ∈ I,
(3) I ∩GL(A) 6= ∅.

(iv) If A is unital, then every (two-sided) maximal ideal is closed.
(v) If A is unital, then every non-trivial (two-sided) ideal is contained in a

maximal ideal.

Proof: (i) Because I ⊆ A is a closed linear subspace, we know from Theorem 1.32
that A/I is a Banach space. It is an algebra via ẋẏ = (xy)• (this is well-defined:
If a, b ∈ I, then ((x+ a)(y + b))• = (xy + xb+ ay + ab)• = (xy)•). And we have
‖ẋẏ‖ ≤ ‖ẋ‖‖ẏ‖: Indeed, for ε > 0, we find a, b ∈ I with ‖x+ a‖ ≤ ‖ẋ‖+ ε, likewise
for ‖ẏ‖. Hence:

‖ẋẏ‖ = ‖
(
(x+ a)(y + b)

)•‖ ≤ ‖(x+ a)(y + b)‖ ≤ ‖x+ a‖‖y + b‖
≤ (‖ẋ‖+ ε)(‖ẏ‖+ ε).

(ii) If x ∈ I, then there is a sequence (xn)n∈N ⊆ I such that xn → x. Then
axn → ax for a ∈ A, thus ax ∈ I

(iii) If 1 ∈ I, then a = a1 ∈ I ∀ a ∈ A, thus A ⊆ I; If x ∈ I ∩GL(A) 6= ∅, then
1 = xx−1 ∈ I.

(iv) Let I ⊆ A be maximal. Then I ⊆ I ⊆ A. Hence I = I or I = A. But as
I 6= A, we have via (iii), that I ⊆ GL(A)c. Because GL(A) is open, I ⊆ GL(A)c,
therefore I 6= A.

(v) By Zorn’s Lemma we find a maximal element with respect to the ordering
I1 ⊆ I2 containing I. If Jα are ideals such that I ⊆ Jα and 1 /∈ Jα, then

⋃
α Jα ⊆ A

is again an ideal with 1 /∈
⋃
α Jα. �
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10 Banach- and C∗-algebras and the Gelfand transformation

Definition 10.9: Let A be a unital Banach algebra. A homomorphism ϕ : A→ C,
ϕ 6= 0 is called a character of A. We put

Spec(A) := {ϕ : A→ C character}

and call Spec(A) the spectrum of A.

Lemma 10.10: Let A be a unital Banach algebra, ϕ ∈ Spec(A).

(i) We have ϕ(1) = 1.
(ii) It holds for all a ∈ A: ϕ(a) ∈ Sp(a), and ϕ(x) 6= 0 for all x ∈ GL(A).

(iii) ϕ is continuous, ‖ϕ‖ ≤ 1 (with ‖ϕ‖ = 1 if ‖1‖ = 1).
(iv) If A is a unital C∗-algebra, then ϕ is a ∗-homomorphism and ‖ϕ‖ = 1.

Proof: (i) Since ϕ 6= 0 we find x ∈ A such that ϕ(x) 6= 0. Then it holds ϕ(x) =
ϕ(x1) = ϕ(x)ϕ(1), thus ϕ(1) is the unit element (with respect to multiplication) in
the Banach algebra C, i. e., ϕ(1) = 1.

(ii) Let x ∈ A be invertible. Then 1 = ϕ(1) = ϕ(xx−1) = ϕ(x)ϕ(x−1), thus
ϕ(x) 6= 0. Furthermore it holds ϕ(ϕ(a)1− a) = 0, thus ϕ(a)1− a is not invertible,
hence ϕ(a) ∈ Sp(a).

(iii) We have that
Sp(A) ⊆ {λ ∈ C | |λ| ≤ ‖a‖},

thus |ϕ(a)| ≤ ‖a‖ for all a ∈ A, i. e., ‖ϕ‖ ≤ 1. If ‖1‖ = 1, then |ϕ(1)| = ‖1‖ = 1,
hence ‖ϕ‖ = 1.

(iv) Since ‖1‖ = 1 holds in unital C∗-algebras, we have that ‖ϕ‖ = 1. Let now
α, β, γ, δ ∈ R with

ϕ(x) = α+ iβ, ϕ(x2) = γ + iδ.

We now need to show, that the equalities α = γ, β = −δ hold, because then it held
that ϕ(x2) = ϕ(x) and ϕ were a ∗-homomorphism.

Assume β + δ 6= 0, then

c := x+ x∗ − (α+ β)∗

β + δ

satisfied ϕ(c) = i and for arbitrary λ ∈ R we thus found ϕ(c+λi) = (1 +λ)i, hence
|1 + λ| ≤ ‖c+ λi‖. Therefore it held that

1 + 2λ+ λ2 = |1 + λ|2 ≤ ‖c+ λi‖2

= ‖(c+ λi)∗(c+ λi)‖
= ‖(c− λi)(c+ λi)‖ = ‖c2 + λ2‖ ≤ ‖c‖2 + λ2,

thus 1 + 2λ ≤ ‖c2‖ for all λ ∈ R, which is a contradiction.
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If we assume α− γ 6= 0 and put

d := ix+ (ix)∗ + 2β1
α− β

,

we may proceed similarly. �

For x, y ∈ A and ϕ ∈ Spec(A) it holds, that

ϕ(xy) = ϕ(x)ϕ(y) = ϕ(y)ϕ(x) = ϕ(yx),

characters do not “see” the commutativity or non-commutativity of A. Thus,
Spec(A) might not contain much information about A if A is non-commutative –
on Sheet 10 we saw, that Spec(Mn(C)) = ∅.
However if A is commutative, Spec(A) contains a lot of information of A.

Proposition 10.11: Let A be a commutative unital Banach algebra. Then the map

Spec(A) −→ {Maximal ideals in A}
ϕ 7−→ ker(ϕ)

is bijective.

Proof: For the surjectivity let I ⊆ A be a maximal ideal (i. e., a two-sided ideal).
Then I is closed by Proposition 10.8 (iv) and A/I is a Banach algebra via Proposi-
tion 10.8 (i). Also A/I is a skew field: Let π : A→ A/I be the quotient map and
let a ∈ A with π(a) 6= 0. Put

J := {bx+ x | b ∈ A, x ∈ I} ⊆ A.

Then J is a two-sided ideal in A, as for (ba+ x), (b′a+ x′) ∈ J and c ∈ A it holds

(ba+ x) + (b′a+ x′) = (b+ b′)a+ (x+ x′), c(ba+ x) = (cb)a+ cx,

the commutativity of J is obvious as A is commutative by precondition. Further-
more it holds I ⊆ J with b = 0 and I 6= J with b = 1 and x = 0; so a ∈ J but a /∈ I
(since π(a) 6= 0). By the maximality of I, we infer that J = A, thus there are b ∈ A
and x ∈ I such that 1 = ba+ x, which implies π(b)π(a) = π(ba+ x) = π(1) = 1,
hence π(a) is invertible and A/I is indeed a skew field. By Theorem 10.6 it holds
that A/I ∼= C and thus

π : A −→ A/I ∼= C

is a charakter with ker(π) = I.
For the injectivity let ϕ1, ϕ2 ∈ Spec(A) with ker(ϕ1) = ker(ϕ2). Then for any

a ∈ A it holds that ϕ1(a)1− a ∈ ker(ϕ1) = ker(ϕ2), thus

0 = ϕ2(ϕ1(a)− a) = ϕ1(a)− ϕ2(a),

which implies ϕ1 = ϕ2.
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10 Banach- and C∗-algebras and the Gelfand transformation

For the well-definedness we check, that for ϕ ∈ Spec(A), ker(ϕ) ⊆ A is indeed a
maximal two-sided ideal: For any a ∈ A it holds that

ϕ(ax) = ϕ(a)ϕ(x) = 0,

furthermore ker(ϕ) 6= A since ϕ 6= 0 by ϕ(1) = 1 6= 0. By Proposition 10.8 (v) and
the surjectivity of the map we find ψ ∈ Spec(A) with ker(ϕ) ⊆ ker(ψ) such that
ker(ψ) is maximal. Then for any a ∈ A it holds that ϕ(a)1− a ∈ ker(ϕ) ⊆ ker(ψ),
i. e.,

0 = ψ(ϕ(a)1− a) = ϕ(a)− ψ(a)
and thus ϕ = ψ. �

Corollary 10.12: Let A be a commutative unital Banach algebra and a ∈ A.

(i) a is invertible if and only if ϕ(a) 6= 0 for all ϕ ∈ Spec(A),
(ii) It holds λ ∈ Sp(a) if and only if ϕ(a) = λ for some ϕ ∈ Spec(A), hence

Sp(a) = {ϕ(a) | ϕ ∈ Spec(A)}.

Proof: (i) “⇒” was shown in Lemma 10.10 (ii), for “⇐” let a ∈ A \ GL(A).
Then

I := {ba | b ∈ A}
is a non-trivial (since 1 /∈ I) two-sided ideal in A and thus I ⊆ ker(ϕ) for
some ϕ ∈ Spec(A), i. e., ϕ(a) = 0 (hint: use Proposition 10.8 (v)).

(ii) We have
λ ∈ Sp(a)⇔ ∃ϕ ∈ Spec(A) : ϕ(λ− a) = 0,

i. e., ϕ(a) = λ. �

Proposition 10.13: Let A be a unital Banach algebra. Then Spec(A) is compact
(with respect to pointwise convergence of characters).

Proof: We just want to give the idea of the proof here.

• By Tychonov’s theorem, every product of compact spaces is compact (Ty-
chonovs theorem is equivalent to the axiom of choice).
• Let E be a normed space and

(E′)1 := {x ∈ E | ‖x‖ ≤ 1} ⊆ E′

the closed unit ball in the dual space of E. Endow (E′)1 with the locally convex
topology of pointwise convergence

ϕλ → ϕ⇔ ϕλ(x)→ ϕ(x)∀x ∈ E.

Then (E′)1 is a closed subset of the product
∏
x∈E1

{λ ∈ C | |λ ≤ 1} which is
compact by Tychonov’s theorem, hence (E′)1 is compact. For x ∈ (E′)1 and y ∈ E1
we then have |x(y)| ≤ ‖x‖‖y‖ ≤ 1.
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• If now suffices to show that Spec(A) ⊆ (A′)1 is a closed subset: Let (ϕλ) ⊆
Spec(A) be a net with ϕλ → ϕ ∈ (A′)1 pointwise. Since ϕλ(1) = 1 for all λ, we
have that ϕ(1) = 1 and moreover

ϕ(xy)←− ϕλ(xy) = ϕλ(x)ϕλ(y) −→ ϕ(x)ϕ(y),

thus ϕ ∈ Spec(A). �

Example 10.14: Let X be a compact topological Hausdorff space. Then C(X) is a
commutative unital Banach algebra (even a C∗-algebra). What is Spec(C(X))?
Let t ∈ X. Put

ϕt : C(X) −→ C

f 7−→ f(t),

then ϕt ∈ Spec(C(X)) for all t ∈ X. We have:

Ψ: X −→ Spec(C(X))
t 7−→ ϕt

is a homeomorphism, i. e., X ∼= Spec(C(X)) as topological spaces.

• Ψ is continuous: For a net (tλ)λ∈Λ in X with tλ → t, we have

ϕtλ(f) = f(tλ)→ f(t) = ϕt(f)

for all f ∈ C(X), hence ϕtλ → ϕ.
• Ψ is injective: Let s, t ∈ X with s 6= t. Find f : X → R continuous such that

f(s) 6= f(t) (if X is metric, put f(y) := d(s, y), if X not metric, the Lemma of
Urysohn grants the existence of such a function). Then

ϕs(f) = f(s) 6= f(t) = ϕt(f),

hence ϕs 6= ϕt.
• Ψ is surjective: We need to show that for every maximal ideal I ⊆ C(X) there

is t ∈ X such that I = ker(ϕt). For ϕ ∈ Spec(C(X)) we find t ∈ X such that
ker(ϕ) = ker(ϕt) via (Theorem 10.11). As in the proof of (Theorem 10.11) we thus
have ϕ = ϕt.
• Ψ−1 is continuous: Ψ is a continuous bijective map between compact Hausdorff

spaces, hence for A ⊆ X closed, A is compact. Then

(Ψ−1)−1(A) = Ψ(A) ⊆ Spec(C(X))

is compact and thus closed.
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10 Banach- and C∗-algebras and the Gelfand transformation

Theorem 10.15: Let A be a unital Banach algebra. Then, the Gelfand transforma-
tion

χ : A −→ C(Spec(A))
x 7−→ x̂,

where x̂(ϕ) := ϕ(x),
(i) . . . is a continuous algebra homomorphism,

(ii) If A is commutative, then ‖χ(x)‖∞ = r(x) and x̂(Spec(A)) = Sp(x).

Proof: (i) We have

x̂+ y(ϕ) = ϕ(x+ y) = ϕ(x) + ϕ(y) = x̂(ϕ) + ŷ(ϕ)
x̂y(ϕ) = ϕ(xy) = ϕ(x)ϕ(y) = x̂ŷ(ϕ)

as well as

|x̂(ϕ)| = |ϕ(x)| ≤ ‖x‖ ∀ϕ,

from which we conclude ‖χ(x)‖∞ = ‖x̂‖∞ ≤ ‖x‖.
(ii) It holds x̂(Spec(A)) = {ϕ(x) | ϕ ∈ Spec(A)} = Sp(x), hence

r(x) = sup{|λ| | λ ∈ Sp(x)} = sup{|x̂(ϕ)| | ϕ ∈ Spec(A)} = ‖x̂‖∞ �

Theorem 10.16: Let A be a commutative unital C∗-algebra. Then, the Gelfand
transformation χ is even an isometric algebra isomorphism respecting the involution,
i. e., it is an isometric ∗-isomorphism.

Proof: First, we want to show that χ is indeed a ∗-homomorphism. By Lemma 10.10,
ϕ is a ∗-homomorphism for all ϕ ∈ Spec(A), hence

x̂∗(ϕ) = ϕ(x∗) = ϕ(x) = x̂(ϕ),

i. e., χ is a ∗-homomorphism.
Secondly, we want to show that χ is isometric: Since A is commutative, we have

x∗x = xx∗ for all x ∈ A. Using the results from Remark 10.3 and Theorem 10.15
(ii), it then holds that ‖x‖ = r(x) = ‖χ(x)‖∞, i. e., χ is isometric.

Thirdly, we need to show that χ is surjective. Therefore consider χ(A) ⊆
C(Spec(A)). χ(A) is a ∗-subalgebra, as for x̂, ŷ ∈ χ(A) it holds that x̂ŷ = x̂y ∈ χ(A)
etc.
Fourthly, χ(A) separates points, because for ϕ,ψ ∈ Spec(A) with ϕ 6= ψ, there

is x ∈ A such that ϕ(x) 6= ψ(x), thus χ(x)(ϕ) = ϕ(x) 6= ψ(x) = χ(x)(ψ).
Finally, χ(A) is closed, because if (x̂n)n∈N ⊆ χ(A) is a Cauchy sequence, then

‖xn − xm‖∞ = ‖χ(xn − xm)‖∞ = ‖x̂n − x̂m‖ < ε

for some n,m ≥ N . Thus (xn)n∈N ⊆ A is a Cauchy sequence, i. e., there is x ∈ A
such that xn → x. Hence x̂n → x̂. Therefore, χ(A) is complete and hence closed.

Now by Stone-Weierstraß we know that χ(A) = C(Spec(A)). �
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Corollary 10.17 (First fundamental theorem of C∗-algebras3):
(i) If X is a compact topological space, then C(X) is a commutative unital

C∗-algebra,
(ii) If A is a commutative unital C∗-algebra, then there is a compact, topological

space X such that A ∼= C(X). In fact X = Spec(A).

Remark 10.18: As stated in Corollary 10.17, every commutative unital C∗-algebra
is of the form C(X). In some sense topology corresponds to commutative C∗-
algebras, hence “non-commutative topology” corresponds to C∗-algebras.
This is somehow on of the keys to view C∗-algebras. For instance: If X is not

connected, then C(X) admits a non-trivial projection f ∈ C(X) (f = f2 = f ,
f 6= 0, f 6= 1). Hence, we might ask: Does a given non-commutative C∗-algebra
have non-trivial projections? i. e., Is the associated “non-commutative topological
space” connected? For more on this, see “Elements of non-commutative geometry”
by Varilly, Gracia-Bondia, Figueroa.

Remark 10.19: (i) For Banach algebras, Theorem 10.15 is wrong, in the sense
that χ is no isomorphism. On Sheet 10, we showed that `1(Z) is a commutative
unital Banach algebra with Spec(`1(Z)) = T, where T := {z ∈ C | |z| = 1}. The
Gelfand transformation

χ : `1(Z) −→ C(T)

is nothing but the Fourier transform:

χ(x)(z) = χ(x)(ϕz) = ϕz(x) =
∑
n∈Z

αnz
n

with x = (αn)n∈Z. Then χ is injective, but not surjective.
(ii) Using the Gelfand transformation, we can show the Theorem of Wiener: If

f ∈ `(T) has an absolutely convergent Fourier expansion and if f(z) 6= 0 for all
z ∈ T, then also 1/f has an absolutely convergent Fourier expansion (study the
image of `1(Z) under χ).

If x ∈ A, we know how to form p(x) ∈ A for a polynomial p. But what about
f(x) ∈ A for a continuous function f , e. g. f =

√
· ? Using f ∈ C(Sp(x)) ∼=

C∗(x, 1) ⊆ A, this is a commutative if x is normal.

Definition 10.20: Let A be a unital C∗-algebra.

(i) If M ⊆ A is a subset, then

C∗(M) :=
⋂

B⊆A C∗−subalgebra,M⊆B
B

is the smallest C∗-subalgebra of A containing M .
3In literature on the topic, this Theorem is also called the “Theorem of Gelfand-Naimark” (where
the spelling of Naimark may vary due to different transliterations of his russian name).
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10 Banach- and C∗-algebras and the Gelfand transformation

(ii) If x ∈ A, then C∗(x, 1) := C∗({x, 1}) ⊆ A.

Remark 10.21: (i) If A is a unital C∗-algebra, then

C∗(x, 1) = {non-commutative polynomials in x and x∗} ⊆ A

since {non-commutative polynomials} ⊆ A is a C∗-subalgebra. This implies that

C∗(x, 1) ⊆ {non-commutative polynomials}

but also
{non-commutative polynomials} ⊆ C∗(x, 1).

(ii) If x is normal, then C∗(x, 1) is commutative, since {polynomials in x and x∗}
is commutative. If we use Corollary 10.17 in this case, we get C∗(x, 1) ∼=
C(SpecC∗(x, 1)), we now want to get a better understanding of C(SpecC∗(x, 1)).

Lemma 10.22: Let A be a unital C∗-algebra, x ∈ A normal.

(i) SpA(y) = SpC∗(x,1)(y) for all y ∈ C∗(x, 1),

(ii) The map

χ(x) : Spec(C∗(x, 1)) −→ Sp(x)
ϕ 7−→ ϕ(x)

is bijective.

Proof: (i) If λ − y is invertible in C∗(x, 1) (i. e., (λ − x)−1 ∈ C∗(x, 1)), then
λ− y is invertible in A. Let now λ− y be invertible in A and consider

B := C∗(x, (λ− y)−1, 1) ⊆ A.

Then B is commutative and unital: Indeed x(λ− y) = (λ− y)x, since C∗(x, 1) is
commutative and x, (λ− y) ∈ C∗(x, 1), thus x(λ− y)−1 = (λ− y)−1x. Hence

{polynomials in x, x∗, (λ− y)−1, ((λ− y)−1)∗, 1}

is commutative. By Corollary 10.17, the Gelfand transform χB : B → C(Spec(B))
is thus a ∗-isomorphism. We need to show that χB(C∗(x, 1)) ⊆ C(Spec(B)) is
a closed ∗-subalgebra separating points. For the point-separating property: Let
ϕ,ψ ∈ Spec(B) with ϕ|C∗(x,1) = ψ]C∗(x,1). Then it holds ϕ(λ − y) = ψ(λ − y)
which implies ϕ((λ− y)−1) = ψ((λ− y)−1) and thus ϕ|B = ϕ|B . Via the Theorem
of Stone-Weierstraß, we see that χB(C∗(x, 1)) = C(Spec(B)) = χB(B). Because
χB is injective, it holds that C∗(x, 1) = B 3 (λ− y)−1.
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(ii) We know from Corollary 10.17 (ii), that χ(x) is surjective. For the injectivity:
Let ϕ,ψ ∈ Spec(C∗(x, 1)) with ϕ(x) = ψ(x). Then

C := {y ∈ C∗(x, 1) | ϕ(y) = ψ(y)} ⊆ C∗(x, 1)

is a closed ∗-subalgebra of A containing {x, 1}. Thus C∗(x, 1) ⊆ C, since C∗(x, 1)
is the smallest such C∗-algebra. Hence C = C∗(x, 1). Therefore ϕ = ψ. χ(x)
is continuous as χ(x) ∈ C(Spec(C∗(x, 1)) and χ(x)−1 continuous since χ(x) is
continuous between compact Hausdorff spaces. �

Theorem 10.23 (Continuous functional calculus): Let A be a unital C∗-algebra,
a ∈ A normal. There is a unique isometric ∗-isomorphism

Φ: C(Sp(a)) −→ C∗(a, 1) ⊆ A

such that Φ(id) = a and Φ(1) = 1. We write f(a) := Φ(f).
In particular, if f is a polynomial in X and X∗, then f(a) is the polynomial

applied to a and a∗.

Proof: Existence: Via Remark 10.21, we can identify C(Sp(a)) ∼= C(Spec(C∗(a, 1))
and via Theorem 10.15, we can identify C(Spec(C∗(a, 1)) ∼= C∗(a, 1), thus there is
such Φ. We have the diagram

C(Sp(a))
∼=−→ C(Spec(C∗(a, 1))

∼=−→ C∗(a, 1)
f 7−→ f ◦ â â←− [ a

thus id 7→ id ◦ â = â 7→ a or alternatively with ϕ(a) = λ: Φ−1(a)(λ) = â(ϕ) =
ϕ(a) = λ and thus Φ−1(a) = id.
Uniqueness: Let Ψ: C∗(a, 1) → C(Sp(a)) be a ∗-isomorphism with Ψ(a) = id,

Ψ(1) = 1. Then
C = {y ∈ C∗(a, 1) | Ψ(y) = Φ−1(y)} ⊆ A

is a C∗-algebra containing {a, 1} (as in Remark 10.21). Thus C∗(a, 1) = C, i. e.,
Ψ = Φ−1. �

Proposition 10.24: The functional calculus for x ∈ A normal in a C∗-algebra A
has the following properties:

(i) (f+g)(x) = f(x)+g(x), (fg)(x) = f(x)g(x), f(x) = f(x)∗ ∀ f, g ∈ C(Sp(x)),
(ii) Sp(f(x)) = f(Sp(x))∀ f ∈ C(Sp(x)),

(iii) If g ∈ C(f(Sp(x)), f ∈ C(Sp(x)), then (g ◦ f)(x) = g(f(x)),
(iv) If x is selfadjoint, then Sp(x) ⊆ R and we may decompose x = x+ + x− with

Sp(x+),Sp(x−) ⊆ [0,∞) and x+x− = 0.

Proof: (i) It holds Φ(f+g) = Φ(f)+Φ(g), Φ(fg) = Φ(f)Φ(g) and so on because
Φ is a ∗ homomorphism.
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10 Banach- and C∗-algebras and the Gelfand transformation

(ii) We have

λ /∈ Sp(f(x)⇔ λ− f(x) = Φ(λ1− f)
⇔ λ1− f is invertible
⇔ f(µ) 6= λ ∀µ ∈ Sp(x)⇔ λ /∈ f(Sp(x))

(iii) We have the diagram

C(Sp(x))
Φ

))
C(Sp(f(x)))

g 7→g
◦f 55

g 7→g(f(x))

Φ

))

α2

22

α1

,,
C∗(x, 1)

C∗(f(x), 1)
( � ⊆

55

and put A := {h ∈ C(Sp(f(x)) | α1(h) = α2(h)} ⊆ C(Sp(f(x))). Then A is a
closed ∗-subalgebra, separating points (as id ∈ A!). Via the Theorem of Stone-
Weierstraß, it holds that A = C(Sp(f(x))).

(iv) For id ∈ C(Sp(x)), we have Φ(id) = Φ(id)∗ = x∗ = x = Φ(id). As Φ is
injective, it follows that id = id and thus Sp(x) ⊆ R. With

h+(t) :=
{
t t ≥ 0,
0 otherwise,

h−(t) :=
{
−t t ≤ 0,
0 otherwise,

we have id = h+ − h−. Put x+ := h+(x) and x− := h−(x). �

Example 10.25: Let A be a unital C∗-algebra, u ∈ A unitary (i. e., u∗u = uu∗ = 1).
Assume that there is λ0 ∈ S1 with λ0 /∈ Sp(u) ⊆ S1 (where the last inclusion is
to be shown on sheet 11). Then f(z) := arg(z) := θ for z = eiθ is continuous on
Sp(u) and real valued. Thus, x := f(u) ∈ A is selfadjoint (via Proposition 10.24)
we infer: x∗ = (f(u))∗ = f(u) = f(u) = x) and eix = u (since for g(t) := eit,
we have g ◦ f = id). Hence, in this case (Sp(u) ( S1), we may write u in “polar
coordinates”.

Definition 10.26: Let A be a unital C∗-algebra, x ∈ A. x is called positive, if
x = x∗ and Sp(x) ⊆ [0,∞).

Proposition 10.27: Every positive element in a unital C∗-algebra A admits a unique
positive square root, i. e., if x ∈ A is positive, there is exactly one y ∈ A positive
with y2 = x. In particular, every positive operator in B(H) has a positive square
root.

Proof: See Exercise sheet 12, exercise 2. �
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11 Spectral theorem for normal
operators on Hilbert spaces

As Motivation for this chapter, we recall the spectral theorem from linear algebra:

Theorem: Let H be a Hilbert space with dim(H) < ∞ and let A ∈ Mn(C) with
A = A∗. Then A may be diagonalised, i. e.,

A =
∑

λ∈Sp(A)

λPλ

where Sp(A) = σP (A) = {λi | 1 ≤ i ≤ n}, Pλ is the projection onto the eigenspace
ker(λ1− A). We have Pλ ⊥ Pµ (i. e., PλH ⊥ PµH, or equivalently PλPµ = 0) if
λ 6= µ and H =

⊕
λ∈Sp(A) PλH =

⊕
λ∈Sp(A) ker(λ1 − A) and

∑
λ∈Sp(A) Pλ = 1,

hence

A ∼=

 λ1
. . .

λn


If dim(H) = ∞ and A = A∗ ∈ K(H), we know from Chapter 9, that we may

decompose A =
∑
λ∈Sp(A) λPλ, where Pλ are the projections onto ker(λ1 − A)

(which are finite-dimensional and non-trivial), Pλ ⊥ Pµ for µ 6= λ and Sp(A) ⊆
{eigenvalues of A} ∪ {0}.

Now, what happens if A = A∗ ∈ B(H) \K(H)? First of all we face the problem,
that “λ ∈ Sp(A) ⇒ λ eigenvalue” does not hold, so we cannot simply take the
projections Pλ onto the eigenspaces.
Our idea:

(i) Write
A =

ˆ
Sp(A)

t dE(t),

where E is a “measure with values in B(H)”, which leads to the notion of Spectral
measures.

(ii) By Theorem 10.23, we know that C(Sp(A)) ∼= C∗(A, 1) ⊆ B(H) for A
normal, i. e., “the whole information on A is in its spectrum” (in fact “spectral
theorem = diagonalise + whole info is in the spectrum”), which will lead to the
extension of the continuous functional calculus to C(Sp(A)) ⊆ Bb(Sp(A)).

Example 11.1: Let H = L2([0, 1]) and

A : H −→ H

t 7−→ tf(t), f ∈ H
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11 Spectral theorem for normal operators on Hilbert spaces

Then A = A∗, as

〈g,Af〉 =
ˆ 1

0
g(t)tf(t) dt =

ˆ 1

0
tg(t)f(t) dt = 〈Ag, f〉,

‖A‖ ≤ 1, as

‖Af‖2 =
ˆ 1

0
|tf(t)|2 dt ≤

ˆ 1

0
|f(t)|2 dt = ‖f‖2

and Sp(A) = [0, 1] (as in (Example 8.6)), but σp(A) = ∅ (no eigenvalues). Hence
“A =

∑
λPλ” does not make sense.

If ∆ ⊆ R is a small interval around λ ∈ Sp(A), then we have Af ≈ λf , if
f |∆c = 0. Consider the orthogonal projection

E(∆): H −→ H∆

f 7−→ f |∆

and put H∆ := {f ∈ H | f |∆c = 0 almost surely} ⊆ H. Then E(∆) behaves like a
measure: For example we have

• If ∆1 ∩∆2 = ∅, then E(∆1)E(∆2) = 0,
• If ∆ = ∆1 ∪· ∆2, then E(∆) = E(∆1) + E(∆2),
• If

⋃
· ni=1 ∆i = [0, 1], then

∑n
i=1E(∆i) = 1,

• If
⋃
· ni=1 ∆i = [0, 1], then Af =

∑n
i=1AE(∆i)f ≈

∑n
i=1 λif .

Hence A ≈
´
λ dE(λ). How do we get such a “spectral measure” E? Let f = χ∆

be the characteristic function of ∆, i. e.,

χ∆(t) =
{

1 t ∈ ∆,
0 otherwise.

Then χ∆(A) =̂
´
χ∆(t) dE(λ) = E(∆). Hence, we may define E(∆) := χ∆(A), as

soon as we are allowed to use functional calculus with measurable functions (it is
clear that χ2

∆ = χ∆ = χ∆, hence E(∆) would then be a projection).
We want an extension

Bb(Sp(x)) // W ∗(x, 1) ⊆ B(H)

C(Sp(x)) //

⊆

OO

C∗(x, 1)

⊆

OO

Definition 11.2: (i) Let X be a set and let (fn)n∈N ⊆ {f : X → C}. (fn)n∈N
converges bounded pointwise to f : X → C, if
(1) fn(x)→ f(x) for all x ∈ X,
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(2) There is C > 0 such that for all n ∈ N it holds that |fn(x)| ≤ C for all
x ∈ X.

(ii) Let X be a compact metric space. Put

Bb(X) := {f : X → C bounded, Borel measurable functions}.

(iii) Let H be a Hilbert space, (xλ)λ∈Λ ⊆ B(H), x ∈ B(H). We say (xλ)λ∈Λ
converges weakly to x (xλ

w→ x) if it holds

〈xλξ, ν〉 → 〈xξ, η〉 ∀ ξ, η ∈ H.

(iv) We call W ∗(x, 1) := C∗(x, 1)
w
⊆ B(H) for x ∈ B(H) the weak closure (with

respect to (iii)).

Remark 11.3: (i) The convergence xλ
w→ x is given by the locally convex toplogy

(ζξ,η)ξ,η∈H , where ζξ,η(x) := |〈xξ, η〉|. It is called the “weak operator topology”.
We have

xλ
‖·‖−→ x⇒ xλ

w−→ x

as
|〈(xλ − x)ξ, η〉| ≤ ‖xλ − x‖‖ξ‖‖η‖ → 0,

thus C∗(x, 1) ⊆ W ∗(x, 1) ⊆ B(H) is still a C∗-algebra (‖·‖-closed ∗-subalgebra).
In fact W ∗(x, 1) is a von Neumann algebra. von Neumann algebras correspond to
non-commutative measure theory as C∗-algebras correspond to non-commutative
topology.

(ii) In the weak operator topology, the multiplication is not continuous, but we
have “xλ

w→ x⇒ xλy
w→ xy”. However, the involution is continuous.

Lemma 11.4: Let X be a compact metric space. Then Bb(X) form the smallest set
M ⊆ {f : X → C}

(i) containing C(X),

(ii) closed under bounded pointwise convergence.

Proof: 1© It holds C(X) ⊆ Bb(X), and Bb(X) is closed under pointwise conver-
gence.

Proof (of 1©): Any f ∈ C(X) is measurable and bounded, since X is compact. For
a sequence (fn)n∈N, the pointwise limit limn→∞ fn(t) =: f(t) is measurable and
bounded. �

2© Let M be the smallest set with (i) and (ii). Then M is a vector space.
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11 Spectral theorem for normal operators on Hilbert spaces

Proof (of 2©): Put Mf := {g : X → C | f + g ∈ M} for f : X → C. Then Mf

satisfies (i) and (ii), if f ∈ C(X). Hence M ⊆ Mf , thus f + M ⊆ M for all
f ∈ C(X). This implies that C(X) +M ⊆M and therefore Mf satisfies (i) and
(ii) for all f ∈ M . It thus holds M ⊆ Mf and hence M + M ⊆ M . Likewise
λM ⊆M . �

3© For all f, g ∈M it holds that max{f, g} ∈M .

Proof (of 3©): The set M ′ := {h : X → C | |h| ∈ M} satisfies (i) and (ii), thus
M ⊆M ′. We now have

max{f, g} = f + g + |f − g|
2 ,

thus for f, g ∈M it holds that max{f, g} ∈M . �

4© G := {A ⊆ X | χA ∈M} is a σ-algebra containing all open sets U ⊆ X.

Proof (of 4©): That∅, X ∈ G is clear. Furthermore we have that χAc = 1− χA ∈M ,
χ∪n

i=1Ai
= max{χA1 , . . . χAn} ∈M and χ∪i∈NAi ∈M via (ii). �

5© It holds Bb(λ) ⊆M .

Proof (of 5©): Let f ∈ Bb(X). There are elementary functionsM 3 g =
∑n
i=1 αiχAi

approximating f in the sense of (ii). �

We thus can understand Bb(X) = C(X)
(b)

.

Theorem 11.5 (“Measurable functional calculus”): Let x ∈ B(H) be normal. The
functional calculus

Φ: C(Sp(x)) −→ C∗(x, 1) ⊆ B(H)

admits a unique extension

Φ′ : Bb(Sp(x)) −→W ∗(x, 1) := C∗(x, 1)
(b)
⊆ B(H)

such that Φ′ is a ∗-homomorphism with ‖Φ′(f)‖ ≤ ‖f‖∞ and

“ fn → f bounded pointwise ⇒ Φ′(fn) w→ Φ′(f)”.

Again, we write f(x) := Φ′(f) for all f ∈ Bb(Sp(x)).

The idea of the proof is to extend 〈Φ(f)ξ, η〉, but use 〈Φ(f)ξ, ξ〉 instead in order
to apply Theorem of Fischer-Riesz: 〈Φ(f)ξ, η〉 =

´
f dµ. This integral we then

want to extend to f ∈ Bb and get back “〈Φ′(f)ξ, η〉” using the polarisation identity.
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Proof: Let for the uniqueness Ψ be another ∗-homomorphism like Φ (so, it extends
Φ, is a ∗-homomorphism, ‖Ψ‖ ≤ 1 and is continuous with respect to the bounded /
pointwise topology). Then by Lemma 11.4

Bb(Sp(x)) ⊆M := {f ∈ Bb(Sp(x)) | 〈Φ′(f)ξ, η〉 = 〈Ψ(f)ξ, η〉 ∀ ξ, η ∈ H},

and as M ⊆ Bb(Sp(x)), Φ = Ψ as desired.
For the existence let ξ ∈ H. Put ∆ξ : C(Sp(x))→ C via

∆ξ(f) := 〈f(x)ξ, ξ〉,

then ∆ξ is positive, linear and continuous. By the Theorem of Fischer-Riesz, there
is a measure µ such that for all f ∈ C(Sp(x)):

∆ξ(f) =
ˆ

Sp(x)
f(t) dµ(t) .

Now put

∆′ξ : Bb(Sp(x)) −→ C

f 7−→
ˆ

Sp(x)
f(t) dµ(t),

then ∆′ξ is a positive, linear, continuous extension of ∆ξ with |∆′ξ(f)| ≤ ‖f‖∞‖ξ‖2.
For f ∈ Bb(Sp(x)) and ξ, η ∈ H, put

Bf (ξ, η) := 1
4

3∑
k=0

ik∆′ξ+ikη(f).

This Bf then is a sesquilinear form on H. For f ∈ C(Sp(x)), Bf has the properties

Bf (ξ, ξ) = 〈f(x)ξ, ξ〉, |Bf (ξ, η)| ≤ ‖f‖∞‖ξ‖‖η‖.

Indeed, for the first property:

Bf (ξ, ξ) = 1
4

3∑
k=0

ik〈f(x)(ξ + ikξ), ξ + ikξ〉

= 1
4

3∑
k=0

ik(1 + ik)(1 + ik)〈f(x)ξ, ξ〉 = 〈f(x)ξ, ξ〉,

and

|Bf (ξ, η)| = |〈f(x)ξ, ξ〉| ≤ ‖f(x)ξ‖‖ξ‖ ≤ ‖f(x)‖‖ξ‖ ≤ ‖f‖∞‖ξ‖.

Then, for the second property, we get |Bf (ξ, η)|2 ≤ |Bf (ξ, ξ)||Bf (η, η)|.
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11 Spectral theorem for normal operators on Hilbert spaces

As Bf is a sesquilinear form, ξ 7→ Bf (ξ, η) (for fixed η ∈ H) is a linear functional
on H and thus by Theorem 5.20, there is ζη ∈ H such that Bf (ξ, η) = 〈ξ, ζη〉.
Now, put Tη := ζη. Then T ∈ B(H). Finally, we put Φ′(f) := T ∗. Then we have
‖Φ′(f)‖ = ‖T ∗‖ = ‖T‖ ≤ ‖f‖∞, as

‖Tη‖ = ‖ζη‖ = ‖fζη‖ = sup
‖ξ‖=1

|〈ξ, ζη〉| = sup
‖ξ‖=1

|〈Bf (ξ, η)〉| ≤ ‖f‖∞‖η‖

Hence, for f ∈ C(Sp(x)) it holds that

〈f(x)ξ, ξ〉 = ∆ξ(f) = ∆′ξ(f) = Bf (ξ, ξ) = 〈ξ, ζξ〉 = 〈ξ, T ξ〉 = 〈T ∗ξ, ξ〉 = 〈Φ′(f)ξ, ξ〉

thus Φ′ is an extension of Φ. We check that Φ′ is a w-continuous ∗-homomorphism.�

Corollary 11.6 (Weak spectral theorem): If x = x∗ ∈ B(H) (or normal), then x
may be approximated in ‖·‖ by diagonal operators.

Proof: There are numers a, b ∈ R such that Sp(x) ⊆ [a, b]. Let ε > 0 and let
a = t0 < t1 < · · · < tn−1 < tn = b be a partition of [a, b], such that max1≤i≤n|ti −
ti−1| < ε. Then ∥∥∥id[a,b] −

n∑
i=1

ti−1χ|(ti−1,ti]

∥∥∥
∞
< ε

Put Ei := χ|(ti−1,ti](x). Then the Ei are projections and

∥∥∥x− n∑
i=1

ti−1Ei

∥∥∥ ≤ ∥∥∥id[a,b]∩Sp(x) −
n∑
i=1

ti−1χ(ti−1,ti]∩Sp(x)

∥∥∥
∞
< ε.

�

Definition 11.7: Let H be a Hilbert space and let (Y,M) be a measurable space.
A map

E : M −→ {projections in B(H)}

is called a spectral measure, if

(i) E(∅) = 0,
(ii) E(Y ) = 1,

(iii) E(
⋃
· i∈NMi) =

∑
i∈NE(Mi) for all Mi ∈M mutually disjoint.

Lemma 11.8: Let ξ ∈ H. Then

µξ : M −→ [0,∞)
A 7−→ 〈E(A)ξ, ξ〉

is a measure.
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Theorem 11.9: Let x ∈ B(H) be normal. Then E : {Borel sets in Sp(x)} → B(H)
defined by

E(A) := χA(x)

is a spectral measure with:

(i) If ξ ∈ H is an eigenvector to the eigenvalue λ ∈ C, then for all f ∈ Bb(Sp(x)):
f(x)ξ = f(λ)ξ,

(ii) E({λ}) is the orthogonal projection onto the eigenspace corresponding to
λ ∈ C. λ ∈ C is an eigenvalue if and only if E({λ}) 6= 0.

(iii) If λ ∈ Sp(x) is isolated, then λ is an eigenvalue.

Proof: It holds χ∅(x) = 0, χSp(x)(x) = 1 and
∑n
i=1 χMi → χ∪· i∈NMi pointwise and

bounded, thus

n∑
i=1

E(Mi)
w−→

∞∑
i=1

E(Mi),
n∑
i=1

χMi
(x) −→ χ∪· i∈NMi

(x) = E
( ⋃
·

i∈N
Mi

)
(i) The formula is true for monomials in x and x∗, hence for polynomials, hence

for f ∈ C(Sp(x)), as

pn
‖·‖−→ f ⇒ f(x)ξ ←− pn(x)ξ = pn(λ)ξ −→ f(λ)ξ

and then also for f ∈ Bb(Sp(x)) by Lemma 11.4.
(ii) It holds

xE({λ})ξ = idSp(x)(x)χ{λ}(x)ξ = (idSp(x)χ{λ})(x)ξ = λχ{λ}(x)ξ = λE({λ})

thus E({λ})H ⊆ Eigλ, if λ is an eigenvalue.
Conversely for all ξ ∈ Eigλ it holds that χ{λ}(x)ξ = χ{λ}(λ)ξ, thus by (i)

Eigλ ⊆ E({λ})H.
(iii) If λ ∈ Sp(x) is isolated, then the function

f(t) :=
{

1 t = λ

0 t ∈ Sp(x) \ {λ}

is continuous, hence ‖E({λ})‖ = ‖f(x)‖ = ‖f‖∞ 6= 0 and thus E({λ}) 6= 0. �

Corollary 11.10 (Spectral theorem): Let x ∈ B(H) be normal and E be the spectral
measure from Theorem 11.9. Put

ˆ
Sp(x)

f(t) dE(t) := z ∈ B(H)
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11 Spectral theorem for normal operators on Hilbert spaces

where z is an operator given by 〈zξ, ξ〉 :=
´

Sp(x) f(t) dµξ(t) and

µξ : {Borel sets on Sp(x)} −→ [0,∞)
A 7−→ 〈E(A)ξ, ξ〉

is the measure from Lemma 11.8. Then x =
´

Sp(x) t dE(t), f(x) =
´

Sp(x) f(t) dE(t)
for all f ∈ Bb(Sp(x)) and

Bb(Sp(x)) −→ B(H)

f 7−→
ˆ
f dE

is a ∗-homomorphism.

Proof: For f(x) = Φ′(f) we have (refer to the proof of Theorem 11.5) for f ∈
C(Sp(x))

〈f(x)ξ, ξ〉 = ∆ξ(f) =
ˆ
f dµ

and
〈E(A)ξ, ξ〉 =

ˆ
χA dµ = µ(A)

µ from the proof Theorem 11.5: µ = µξ. �

Example 11.11: Let H = L2([0, 1]) and

A : H −→ H

f 7−→ idf.

Then

E : {Borelsets in [0,1]} = B([0, 1]) −→ B(H)
B 7−→ E(B)

with E(B)f = χB(A)f = f |B defines the spectral measure from Lemma 11.8. It
holds

µf (B) = 〈E(B), f〉 =
ˆ 1

0
χB(t)f(t)f(t) dt =

ˆ
B

|f(t)|2 dt,

i. e., µf is gives as the Lebesgue-measure with density t 7→ |f(t)|2. We thus have〈(ˆ 1

0
t dE(t)

)
f, f

〉
=
ˆ

Sp(A)
t dµf (t) =

ˆ 1

0
t|f(t)|2 dt

=
ˆ 1

0
(Af)(t)f(t) dt = 〈Af, f〉,

which shows A =
´
t dE(t).
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12 Unbounded operators
In Chapter 1, we have seen that each linear operator A : H → H is bounded
(i. e., continuous) if dim(H) < ∞. If dim(H) = ∞, this is not true anymore
(although constructing “Examples” is a bit tricky). The theory of unbounded
(linear) operators deals with such situations, is however not complementary to the
theory of bounded operators but rather a vast generalisation thereof. In fact it also
captures many interesting operators, such as differential operators and observables
in quantum mechanics, that even fail to be defined on all of H. Developing this
general frame is the goal of this chapter.

Example 12.1: Consider the complex Hilbert space

H = L2(R) =
{
f : R→ C measurable :

ˆ
R

|f(t)|2 dλ <∞
}
/N .

On the subspace D(Q) := {f ∈ L2(R) |
´
R
t2|f(t)|2 dλ < ∞} we may define the

position operator

Q : H ⊃ D(Q) −→ H

f 7−→ idf.

This linear operator fails to be bounded since fn := χ[n,n+1] ∈ D(Q) satisfies

‖f‖22 =
ˆ
R

|χ[n,n+1](t)|2 dλ =
ˆ n+1

n

1 dt = 1,

but

‖Qf‖22 =
ˆ
R

t2χ[n,n+1](t) dλ =
ˆ n+1

n

t2 dt ≥ n2 n→∞−→ ∞.

Similarly, the momentum operator

P : H ⊃ D(P ) −→ H

t 7−→ if ′(t)

is only defined on D(P ) := {f ∈ C1(R) ∩ L2(R) | f ′ ∈ L2(R)} and fails to be
bounded since

fn : R −→ C

t 7−→
(n
π

) 1
4 exp

(
−nt

2

2

)
satisfies ‖fn‖2 = 1, but ‖Pfn‖2 = 1

2
√

2n→∞ as n→∞.
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12 Unbounded operators

Definition 12.2: Let H be a Hilbert space.

(i) An (unbounded) operator T on H is given by a linear map T : D(T ) → H,
where D(T ) ⊆ H is a linear subspace, called the domain of T .

(ii) If D(T ) = H, we say that T is densely defined.
(iii) G(T ) := {(x, Tx) | x ∈ D(T )} ⊆ H ×H is called the graph of T .
(iv) An operator S is called an extension of T (T ⊆ S) if D(T ) ⊆ D(S) and

Tx = Sx for all x ∈ D(T ) or equivalently, if G(T ) ⊆ G(S).
(v) T is called closed, if G(T ) is closed in H ×H.
(vi) T is called closeable, if T admits an extension S such that S is closed.

Remark 12.3: (i) If H,K are Hilbert spaces, then H × K becomes a Hilbert
space (H ⊕K) with the inner product

〈(x1, y1), (x2, y2)〉 := 〈x1, x2〉H + 〈y1, y2〉K .

Clearly a sequence (xn, yn)n∈N in H×K converges to (x, y), i. e., (xn, yn)→ (x, y),
if and only if xn → x and yn → y. Thus, an operator T on H is closed if and only
if it holds:

“(xn ∈ D(T ), xn → x ∈ H and Txn → y ∈ H) ⇒ (x ∈ D(T ) and Tx = y)”,

see Remark 4.15. If T is closed and D(T ) = H, then T is continuous by the closed
graph theorem Theorem 4.16.

(ii) A linear subspace G ⊆ H ⊕ H is the graph of an operator if and only if
G ∩ ({0} ×H) = {(0, 0)}.

Proof: “⇒”: If G = G(T ) for some operator T , then (x, y) ∈ G∩({0}×H) satisfies
x = 0 and thus y = Tx = 0.

“⇐”: Put D(T ) := {x ∈ H | ∃ y ∈ H : (x, y) ∈ G} and define T : D(T )→ H by
Tx := y for each x ∈ D(T ), where y ∈ H is chosen such that (x, y) ∈ G. This is
well-defined: If there are points (x, y1), (x, y2) ∈ G, then (0, y1−y2) ∈ G∩({0}×H),
thus y1 − y2 = 0, i. e., y1 = y2. �

(iii) For an operator T : D(T )→ H, the following statements are equivalent:
(1) T is closeable,
(2) The separating space of T , that is given by

S(T ) := {y ∈ H | ∃ (xn)n∈N ⊆ D(T ) : xn → 0, Txn → y},

is {0},
(3) G(T ) ∩ ({0} ×H) = {(0, 0)}.
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Proof: “(1) ⇒ (2)”: Let S with T ⊆ S be closed. Take y ∈ S(T ) and let (xn)n∈N
be a sequence in D(T ) with xn → 0 and Txn → y. Since T ⊆ S, we have that
(xn, Txn) ∈ G(T ) ⊆ G(S) and thus, since G(S) is closed, (xn, Txn) → (0, y) ∈
G(S), i. e., y = 0.
“(2) ⇒ (3)”: If (0, y) ∈ G(T ) is given, we find (xn)n∈N in D(T ) such that

(xn, Txn)→ (0, y), i. e., xn → 0 and Txn → y. Thus y ∈ S(T ) = {0} and therefore
y = 0.

“(3)⇒ (1)”: If (3) holds, then (ii) yields that G(T ) is the graph of some operator
T on H which is thus closed. Moreover T ⊆ T since G(T ) ⊆ G(T ) = G(T ), hence
T is closeable (Note, that D(T ) = D(T )

‖·‖T , where the graph norm ‖·‖T is given
by ‖x‖2T := ‖x‖2H + ‖Tx‖2). �

(iv) If T : D(T )→ H is closeable, there is a unique minimal closed extension T
of T called the closure of T . We have that G(T ) = G(T ).

Proof: The existence of a closed extension T of T with the property G(T ) = G(T )
was established in the proof of “(3) ⇒ (1)” in part (iii). Now, if S ⊇ T is any
other closed extension of T , we have G(T ) = G(T ) ⊆ G(S) = G(S) because S is
an extension of T and S is closed, and hence T ⊆ S. This shows the minimality of
T and thus the uniqueness. �

(v) Let T : D(T )→ H be closeable. A subspace D ⊆ D(T ) is called a core for
T , if T |D = T .

(vi) If T : D(T ) → H is injective we may consider T−1 : D(T−1) → H, where
D(T−1) := im(T ). Then T is closed if and only if T−1 is closed (Note that
U : H ⊕H → H ⊕H, (x, y) 7→ (y, x) is an isometric isomorphism).

(vii) In general, the composition of closed operators (with suitable domains) is
not closed. There are even examples of continuous linear operators S and closed
linar operators T for which ST is not closed. Remarkably, TS is under these
conditions, with suitable domain, always closed.

What about existence of adjoint operators? Even in the case of bounded operators,
some work had to be done for that purpose; see (Proposition 7.4).

Theorem 12.4: Let T : D(T )→ H be densely defined.

(i) Put D(T ∗) := {y ∈ H | x 7→ 〈Tx, y〉 is continuous on D(T )}. Then D(T ∗)
is a linear subspace of H.

(ii) For each y ∈ D(T ∗) there is a unique element T ∗y ∈ H such that for all
x ∈ D(T ) holds:

〈Tx, y〉 = 〈x, T ∗y〉.

The induced operator T ∗ : D(T ∗)→ H, y 7→ T ∗y is linear.
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12 Unbounded operators

(iii) G(T ∗) is closed, i. e., T ∗ is a closed operator. More precisely: We have

G(T ∗) = V (G(T )⊥) =
(
V (G(T ))

)⊥
for a unitary operator V : H ⊕H → H ⊕H, (x, y) 7→ (y,−x) which sataisfies
V 2 = −id. We have

H ⊕H = V (G(T ))⊕G(T ∗)

and ker(T ∗) = im(T )⊥.
(iv) If T is closed, then D(T ∗) ⊆ H is dense. Then T ∗∗ := (T ∗)∗ = T .
(v) D(T ∗) ⊆ H is dense if and only if T is closeable. If T is closeable, then

T = T ∗∗.
(vi) If T ⊆ S, then S∗ ⊆ T ∗.

Proof: (i) Define fy : D(T )→ C, x 7→ 〈Tx, y〉 for y ∈ H. Since for any x ∈ D(T )
and y, z ∈ D(T ∗) it holds that

fλy+µz(x) = λfy(x) + µfz(x),

we know that λy + µz ∈ D(T ∗) for all λ, µ ∈ C.
(ii) Take y ∈ D(T ∗). Since fy is continuous and thus bounded, there is C > 0

so that |fy(x)| ≤ C‖x‖ for all x ∈ D(T ). By Theorem 1.12, fy admits a continuous
and linear extension f ′y : H = D(T ) → H. By Theorem 5.20, we may thus find
z ∈ H such that for all x ∈ H holds:

f ′y(x) = 〈x, z〉.

Then we have for all x ∈ D(T )

〈Tx, y〉 = fy(x) = f ′y(x) = 〈x, z〉.

Suppose that there were z1, z2 ∈ H satsifying 〈x, z1〉 = 〈Tx, y〉 = 〈x, z2〉 for all
x ∈ D(T ). Then by the properties of the inner product, we had for all x ∈ D(T )

〈x, z1 − z2〉 = 0,

and since D(T ) = H, it followed that z1 − z2 = 0, i. e., z1 = z2. Thus, we may put
T ∗y := z; checking that T ∗ is linear is then straight forward.

(iii) We have that V ∗(x, y) = (−y, x) since

〈V (x1, y2), (x2, y2)〉 = 〈(y1, x1), (x2, y2)〉
= 〈y1, x2〉 − 〈x1, y2〉 = 〈(x1, y1), (−y2, x2)〉.
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Thus V ∗V = 1 = V V ∗, i. e., V is a unitary operator; V 2 = −id is clear. Further-
more:

(x, y) ∈ G(T ∗)⇔ x ∈ D(T ∗), y ∈ T ∗x
⇔ 〈Tz, x〉 = 〈z, y〉 ∀ z ∈ D(T )
⇔ 0 = 〈(z, Tz), (−y, x)〉 ∀ z ∈ D(T )
⇔ 0 = 〈V (z, Tz), (x, y)〉 ∀ z ∈ D(T )
⇔ (x, y) ⊥ V (G(T )), i. e., (x, y) ∈ (V (G(T )))⊥.

Thus G(T ∗) = (V (G(T )))⊥ = V (G(T )⊥), where the last equality holds because V
is a unitary operator. Since (V (G(T )))⊥ is closed (see Remark 5.13), we see that
G(T ∗) is closed. By Theorem 5.18, we have

H ⊕H = V (G(T ))⊕ (V (G(T )))⊥ = V (G(T ))⊕G(T ∗).

As in the proof of Proposition 7.8 one shows that ker(T ∗) = im(T )⊥.
(iv) Let T be closed. Since V is a unitary operator that satisfies V 2 = −id, (iii)

yields that
H ⊕H = G(T )⊕ V (G(T ∗)),

i. e., G(T ) = (V (G(T ∗))⊥. Take z ∈ D(T ∗)⊥. We want to show that z = 0. Since
for all y ∈ D(T ∗) holds that

〈(0, z), V (y, T ∗y)〉 = 〈(0, z), (T ∗y,−y)〉 = −〈z, y〉 = 0,

we see that (0, z) ∈ (V (G(T ∗)))⊥ = G(T ), hence z = T (0) = 0. Thus D(T ∗)⊥ = 0,
i. e., D(T ∗) = H. We may apply (iii) to T ∗, which yields (since T ∗ is closed)

H ⊕H = V (G(T ∗))⊕G(T ∗∗),

thus G(T ∗∗) = (V (G(T ∗)))⊥ = G(T ), i. e., T ∗∗ = T .
The remaining statements (v) and (vi) are shown similarly. �

Remark 12.5: Let T ∈ B(H) be normal and let E be its spectral measure. The
Borel functional calculus

Bb(Sp(T )) −→W ∗(T, 1) ⊆ B(H)

f 7−→
ˆ

Sp(T )
f(t) dE(t)

admits an extension to B(Sp(T )) with values being unbounded operators: If
f ∈ B(Sp(T )) is given, then

Df :=
{
x ∈ H :

ˆ
Sp(T )

|f(t)|2 dµx(t) <∞
}
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12 Unbounded operators

with the measure µx given by µx(A) = 〈E(A)x, x〉 is a dense subspace of H; there
is a unique operator f(T ) on H with D(f(T )) = Df , that satisfies

〈f(T )x, x〉 =
ˆ

Sp(T )
f(t) dµx(t)

for all x ∈ Df ; see also (Theorem 11.9). We write

f(T ) =
ˆ

Sp(T )
f(t) dE(t) .

Example 12.6: The momentum operator (see Example 12.1)

Q : L2(R) ⊇ D(Q) −→ L2(R)
f 7−→ idf

on D(Q) := {f ∈ L2(R) |
´
R
|tf(t)|2 dt < ∞} is densely defined. Indeed: For all

f ∈ L2(R) it holds that fχ[−N,N ] ∈ D(Q). By Theorem 12.4, the adjoint operator
Q∗ exists. How does it look like? We have

g ∈ D(Q∗)⇔ f 7→ 〈Qf, g〉 (continuous on D(Q))

⇔ ∃C > 0∀ f ∈ D(Q) :
∣∣∣ˆ
R

f(t)tg(t) dt
∣∣∣ = |〈Qf, g〉| ≤ C‖f‖2

⇔ (t 7→ tg(t)) ∈ L2(R)⇔ g ∈ D(Q)

and Q∗g = Qg, since for all f ∈ D(Q) holds

〈Qf, g〉
ˆ
R

f(t)tg(t) dt = 〈f,Qg〉,

thus Q∗ = Q.

Definition 12.7: Let T : D(T )→ H be a densely defined operator.

(i) T is called symmetric, if T ⊆ T ∗,
(ii) T is called self-adjoint, if T = T ∗,

(iii) T is called maximally symmetric, if T is symmetric and if there is a symmetric
operator T ⊆ S, then T = S.

For such operators (self-adjoint or symmetric), we hope for a “nice” theory like
in the bounded case.

Remark 12.8: (i) If T is symmetric, then for all x, y ∈ D(T ) it holds that

〈Tx, y〉 = 〈x, Ty〉.
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(ii) Selfadjoint operators are closed by Theorem 12.4 (iii). Symmetric operators
might not be closed, but they are always closeable (T ⊆ T ∗, T ∗ is closed).

(iii) Selfadjoint operators are maximally symmetric (If there are operators T =
T ∗ and S ⊆ S∗, then T ⊆ S ⇒ S∗ ⊆ T ∗ = T ⊆ S ⊆ S∗ holds and thus T = S).
The converse is not true.

Definition 12.9: Let T be an operator on H. Then

Res(T ) := {λ ∈ C | λ− T : D(T )→ H invertible}

is called the Resolvent set and Sp(T ) := C \ Res(T ) is called the spectrum of T .

Lemma 12.10: Let T be symmetric. Then we have the following statements:

(i) ‖Tx+ ix‖2 = ‖Tx‖2 + ‖x‖2 = ‖Tx− ix‖2 for all x ∈ D(T ),
(ii) T is closed if and only if im(T+i) is closed which holds if and only if im(T− i)

is closed,
(iii) T + i, T − i are injective,
(iv) If T is also closed, then im(λ − T ) is closed and λ − T is injective for all

λ ∈ C \R,
(v) If im(T + i) = H or im(T − i) = H, then T is maximally symmetric.

Proof: (i) It holds that

‖Tx+ ix‖2 = 〈Tx, Tx〉+ 〈Tx, ix〉+ 〈ix, Tx〉+ 〈ix, ix〉
= ‖Tx‖2 − i〈Tx, x〉+ i〈Tx, x〉+ ‖x‖2 = ‖Tx‖2 + ‖x‖2.

(ii) The map

G(T ) −→ im(T + i)
(x, Tx) 7−→ (T + i)x

is surjective and it is isometric since

‖(x, Tx)‖2 = ‖x‖2 + ‖Tx‖2 = ‖(T + i)x‖2.

Then G(T ) is closed if and only if im(T + i) is closed:
In general, let

H1 ⊇ K
α−→ L ⊆ H2

be surjective and isometric. If L is closed, then K is closed, since for a sequence
(xn)n∈N ⊆ K with xn → x ∈ H1, it holds that L 3 α(xn)→ α(x). As L is closed,
α(x) ∈ L holds and thus x = α−1(α(x)) ∈ K. If K is closed, then L is closed, as for
a sequence (yn) ⊆ L with yn → y ∈ H2, the sequence (xn) ⊆ K with α(xn) = yn
is a Cauchy sequence due to the isometric property of α. Because K is closed,
(xn)→ x ∈ K, hence limn→∞ α(xn) = α(x) = y ∈ L and therefore, L is closed as
well.

95



12 Unbounded operators

(iii) If (T + i)x = 0, then by (i), x = 0. Thus, T + i is injective.
(iv) Let T be closed and symmetric. Let λ = a + ib ∈ C with b 6= 0. Let

x ∈ D(T ). Then
‖(λ− T )x‖2 ≥ b2‖x‖2,

indeed:

‖(λ− T )x‖2 = |λ|2‖x‖2 − λ〈x, Tx〉 − λ〈Tx, x〉+ ‖Tx‖2

= (a2 + b2)‖x‖2 − 2a〈x, Tx〉+ ‖Tx‖2

= b2‖x‖2 + ‖(a− T )x‖2 ≥ b2‖x‖2.

Hence λ− T is injective: If (λ− T )x = 0, then x = 0, and im(λ− T ) is closed: If
(λ− T )xn → y, then ((λ− T )xn) is a Cauchy-sequence and thus (xn) is a Cauchy
sequence. Therefore there is x ∈ D(T ) with xn → x and (λ− T )xn → (λ− T )x.

(v) Let T ( S. Then T + i ( S + i, but then S + i is not injective (as T + i is
surjective). By (iii), S cannot be symmetric. �

Proposition 12.11: Let T be closed and symmetric. Then the following are equiva-
lent:

(i) T is selfadjoint,
(ii) i and −i are no eigenvalues of T ∗ (i. e., ker(T ∗ ± i) = {0}),

(iii) im(T + i) = im(T − i) = H.

Proof: “(i) ⇒ (ii)”: Let (T ∗ − λ)x = 0 for some λ ∈ C \R (for instance, λ = ±i).
Then

λ〈x, x〉 = 〈λx, x〉 = 〈T ∗x, x〉 = 〈x, Tx〉 = 〈x, T ∗x〉 = 〈x, λx〉 = λ〈x, x〉,

Since λ 6= 0, we infer 〈x, x〉 = 0 and thus x = 0.
“(ii) ⇔ (iii)”: We have the equialities

ker(T ∗ + i) = {0} ⇔ im(T − i)⊥ = 0 (Theorem 12.4 (iii))
⇔ im(T − i) = H (Lemma 12.10 (ii)).

“(iii) ⇒ (i)”: We have T ⊆ T ∗. We need to show, that D(T ∗) ⊆ D(T ).
Let x ∈ D(T ∗). Since im(T − i) = H, we find y ∈ D(T ) = D(T − i) such
that (T − i)y = (T ∗ − i)x. Since y ∈ D(T ) ⊆ D(T ∗) = D(T ∗ − i), we have
(T ∗ − i)y = (T − i)y = (T ∗ − i)x (because T ⊆ T ∗). Since T ∗ − i is injective by
(ii), this imlies x = y ∈ D(T ). �

Lemma 12.12: If T is closed, then (λ−T )−1 ∈ B(H) for all λ ∈ Res(T ). Moreover
Sp(T ) ⊆ C is closed.
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Proof: λ−T is closed, since for D(λ−T ) ⊇ (xn) with xn → x and (λ−T )xn → y,
we have xn ∈ D(T ) and hence x ∈ D(T ), since T is closed. Therefore we have
x ∈ D(λ−T ) and y ← (λ−T )xn = λxn−Txn → λx−Tx = (λ−T )x, now apply
Remark 12.3 (iii).
Because λ− T is closed, G(λ− T ) is closed and

G((λ− T )−1) = {(y, x) | (x, y) ∈ G(λ− T )}

is closed as well. Hence, (λ− T )−1 is closed.
D((λ − T )−1) = H: For λ ∈ Res(T ), we have that (λ − T ) : D(T ) → H is

invertible, thus (λ− T )−1 : H → D(T ) is bounded via Theorem 4.16.
Let λ ∈ Res(T ) and µ ∈ C with |λ− µ| < ‖(λ− T )−1‖−1. Then

µ− T = ((µ− λ)(λ− T )−1 + 1)(λ− T )

where ((µ−λ)(λ−T )−1 +1) is bounded and invertible by Lemma 8.7, as ‖1− [(µ−
λ)(λ−T )−1+1]‖ = |λ−µ|‖(λ−T )−1‖ < 1, thus µ ∈ Res(T ) andB(λ, ‖(λ−T )−1‖) ⊆
Res(T ). Therefore, Res(T ) is open and Sp(T ) ⊆ C is closed. �

Remark 12.13: Sp(T ) is not compact in general. For instance Sp(Q) = R, where
Q is the ... operator from Example 12.6.

Proposition 12.14: (i) If T is selfadjoint, then Sp(T ) ⊆ R.
(ii) If T is closed and symmetric and Sp(T ) ⊆ R, then T is selfadjoint.

Proof: (i) Let λ ∈ C \ R. As T = T ∗, T is closed by Theorem 12.4 (iii). By
Lemma 12.10 (iv), we know that λ− T , λ− T are injective, im(λ− T ) is closed.
We thus know that im(λ − T )⊥ = ker(λ − T ) = {0} and therefore im(λ − T ) =
im(λ− T ) = H. We conclude, that λ − T is injective and surjective, hence
λ /∈ Sp(T ).

(ii) If Sp(T ) ⊆ R, then ±i /∈ Sp(T ), thus im(T ± i) = H. By Proposition 12.11
it now holds that T = T ∗. �

Remark 12.15: Let T be closed and symmetric, but T 6= T ∗. Then Sp(T ) ( R

and i ∈ Sp(T ) or −i ∈ Sp(T ) (since if ±i /∈ Sp(T ), it held that im(T ± i) = H and
thus T was selfadjoint in ths case). One can show that ker(λ− T ∗) has constant
dimension for all λ ∈ C+ := {z ∈ C | Im(z) > 0}, likewise for C−. Hence if
i ∈ Sp(T ), then C+ ⊆ Sp(T ) and if −i ∈ Sp(T ), then C− ⊆ Sp(T ). Thus, there
are only four possiblities for T closed and symmetric:

(i) Sp(T ) = C+ ∪R (i ∈ Sp(T ), −i /∈ Sp(T )),
(ii) Sp(T ) = C− ∪R (i /∈ Sp(T ), −i ∈ Sp(T )),

(iii) Sp(T ) = C (i ∈ Sp(T ),−i ∈ Sp(T )),
(iv) Sp(T ) ⊆ R (i. e., T = T ∗).
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12 Unbounded operators

Therefore whether or not T is selfadjoint depends on T ± i. In any case, T ± i is
injective (by Lemma 12.10) and im(T ± i) is closed. The question whether or not
±i ∈ Sp(T ) amounts to the question, whether im(T ± i) = H.

Definition 12.16: Let T be closed and symmetric. We define

n+(T ) := dim(im(T + i)⊥) ∈ [0,∞], n−(T ) := dim(im(T − i)⊥) ∈ [0,∞]

and call n±(T ) the defect indices.

Corollary 12.17: Let T be closed and symmetric. Then T is selfadjoint if and only
if n+ = n− = 0.

We already showed this statement in Proposition 12.11.

Remark 12.18: For bounded selfadjoint operators, we have a spectral theorem.
How about for unbounded selfadjoint operators? One of the occuring problems is,
that Sp(T ) ⊆ R might be unbounded. Let’s make the spectrum compact: Consider
the mapping

α : R −→ S1 \ {1}

t 7−→ t− i
t+ i .

α is bijective and has the inverse map

β : S−1 −→ R

z 7−→ i 1 + z

1− z

(check that |t− i/t+ i| = |t+ i/t+ i| = 1 and that α(0) = −1, α(1) = −i).

Definition 12.19: Let T be closed and symmetric. Define D(U) := im(T + i). The
Cayley-transform of T then is

U := (T − i)(T + i)−1 : im(T + i) −→ im(T − i).

Remark 12.20: By Lemma 12.10, im(T ± i) is closed and T ± i is injective. Hence
U is well-defined.

Theorem 12.21: Let T be closed and symmetric and U be its Cayley-transform.

(i) U is an isometry, U is closed,
(ii) im(1− U) = D(T ),

(iii) 1− U : D(U)→ D(U) is injective,
(iv) T = i(1 + U)(1− U)−1,
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(v) U ∈ B(H) is unitary if and only if T is selfadjoint.

Proof: (i) Let y = (T + i)x ∈ im(T + i) with x ∈ D(T ). Then Uy = (T − i)x.
Now, by Lemma 12.10, we know that

‖Uy‖2 = ‖(T − i)x‖2 = ‖(T + i)x‖2 = ‖y‖2.

Since im(T − i) = im(U) is closed, U is closed by Remark 12.3.
(ii) Let y = (T + i)x ∈ D(U) = im(T + i) with x ∈ D(T ). Then

(1− U)y = (T + i)x− (T − i)x = 2ix ∈ D(T ),

thus im(1− U) = D(T ).
(iii) If (1 − U)y = 0, then 2ix = 0, thus x = 0 which implies y = 0 (again:

y = (T + i)x).
(iv) Similarly we see that (1 +U)((T + i)x) = 2Tx. Hence for x ∈ D(T ) we have

i(1 + U)(1− U)−1
(

2i
2i x
)

= i(1 + U)(1− U)−1
(

1
2i (1− U)(T + i)x

)
= 1

2(1 + U)(T + i)x = Tx.

(v) If T is selfadjoint, by Proposition 12.11 it holds that D(U) = im(T + i) = H
and im(U) = im(T − i) = H. Hence U : H → H is isometric and surjective and
therefore unitary.
Conversely, if U is unitary, then it holds im(T + i) = D(U) = H respectively

im(T − i) = im(U) = H and thus by Proposition 12.11, T is selfadjoint. �

Remark 12.22: Let V be a closed isometric operator on H such that 1 − V is
injective. Then V is the Cayley-transform of a closed symmetric operator defined
as in Theorem 12.21 (iv).

Theorem 12.23: Let T be closed and symmetric. Then we have

(i) T is selfadjoint if and only if n+ = n− = 0,
(ii) T is maximally symmetric if and only if n+ = 0 or n− = 0,

(iii) T has a selfadjoint extension if and only if n+ = n−.

Proof: (i) is the statement from Corollary 12.17. As for (ii) and (iii): Let S be
closed and symmetric and let T ⊆ S. Furthermore let V be the Cayley-transform
of S. Then U ⊆ V . Hence, if n+ = 0 or n− = 0, U cannot be extended in the way
which implies statement (ii).

If n+ = n−, we may find such a unitary extension V and Theorem 12.21 (v)
gives statement (iii). �
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12 Unbounded operators

Example 12.24: The momentum operator (Tf)(t) = if ′(t) on L2(0, 1) is symmetric,
but not selfadjoint. Using Theorem 12.23, we can see that there is a selfadjoint
extension.

Theorem 12.25 (Spectral theorem for selfadoint unbounded operators): Let T be
selfadjoint. Let U be its Cayley-transform, then U ∈ B(H) is unitary, i. e., it
holds Sp(U) ⊆ S1. Let E : {Borel sets in Sp(U)} → B(H) be the spectral measure
associated to U . Define

F : {Borel sets in R} −→ B(H)
A 7−→ E(β−1(A))

with β from Remark 12.18. Then F is the spectral measure which is concentrated
on Sp(T ) (i. e., if A ∩ Sp(T ) = ∅, then F (A) = 0). Put

S :=
ˆ
R

t dFt on D(S) :=
{
x ∈ H :

ˆ
R

t2 dµx(t) <∞
}
.

Then S = T , i. e., in this sense we may “diagonalise” T .
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