

Exercices to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 1

submission: Tuesday, October 24 2017, 2 pm postbox of Vincent Preiß (basement of building E2.5)

Exercise 1 (10 points). Let $f: X \to Y$ be a mapping netween topological spaces. Show, that f is continuous (in the sense of definition 1.3 of the lecture) if and only if, for every net $(x_{\lambda})_{\lambda \in \Lambda} \subseteq X$ with $x_{\lambda} \to x$ we already have $f(x_{\lambda}) \to f(x)$. This proves remark 1.9(d) of the lecture.

product topology. If X and Y are topological spaces, then the *product topology* on $X \times Y$ is generated by the set $\{U \times V \mid U \subseteq X, V \subseteq Y \text{ both open}\}$. Hence open sets in $X \times Y$ are arbitrary unions of such sets $U \times V$. Accordingly, $N \subseteq X \times Y$ is a neighbourhood of $(x, y) \in X \times Y$ if there are open sets $U \subseteq X, V \subseteq Y$ with $x \in U, y \in V, U \times V \subseteq N$. So a net $(x_{\lambda}, y_{\lambda})_{\lambda \in \Lambda}$ converges to (x, y) if and only if $x_{\lambda} \to x$ and $y_{\lambda} \to y$. It follows from exercise 1, that $f : X \times Y \to Z$ is continuous if and only if for all sequences $x_{\lambda} \to x$, $y_{\lambda} \to y$ we have $f(x_{\lambda}, y_{\lambda}) \to f(x, y)$.

Exercise 2 (10 points). let X be a topological space. Show, that the following are equivalent.

- (a) Each two points in X have disjoint neighbourhoods.
- (b) Every point in X is the intersection of its closed neighbourhoods.
- (c) The diagonal in $X \times X$ is closed.
- (d) No net in X converges against two different points.

If one of the above (and so all of them) are fulfilled, the space X is called a *Hausdorff space* (remark: Metric spaces are Hausdorff spaces.)

Exercise 3 (10 points). Let the usual topology on \mathbb{R}^2 be extended to a topology on $\mathcal{R}^2 := \mathbb{R}^2 \cup \{\infty\}$ by defining the sets U_α for $\alpha \in A$ as neighbourhoods of ∞ (they form a neighbourhood system of ∞). Here

 $U_{\alpha} := \{ (x, y) \in \mathbb{R}^2 \mid x > c_{\alpha}, y > f_{\alpha}(x) \} \cup \{ \infty \}$ $A := \{ (c_{\alpha}, f_{\alpha}) \mid c_{\alpha} \in \mathbb{R}, f_{\alpha} : \mathbb{R} \to \mathbb{R} \text{ continuous, strictly increasing, unbounded} \}$

- (a) Prove, that there is no sequence in \mathbb{R}^2 converging to ∞ .
- (b) Construct a net in \mathbb{R}^2 , converging against ∞ .

Exercise 4 (10 points). Let Y be a complete metric space and $X \subseteq Y$ a subset. Prove, that the completion \hat{X} is isometrically isomorphic to the closure \bar{X} of X. (This is a part of Theorem 1.12).