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Exercise 1 (10 points). Let X be a locally-convex vector space with countably many
semi-norms {p0, p1, . . .}, such that pn(x) = 0 for all n ∈ N0 already implies x = 0. Show
that

d(x, y) =
∞∑
n=0

2−n
pn(x− y)

1 + pn(x− y)

defines a metric on X, inducing the same topology as the semi-norm system. Show that
in the case X = C∞[0, 1] with pn(f) := ‖f (n)‖∞ (like in Example 1.35(a) of the lecture)
the vector space X is complete. (This metric does not come from a norm.)
Hint: From the Analysis course you (should) know, that the pointwise limit f of a sequence
(fn) of continuous, differentiable functions is again differentiable if the sequence (f ′n)
converges to the function g uniformly. In this case we have f ′ = g.

Exercise 2 (10 points). A metric space (X, d) is called separable, if there is a countable
subset A ⊆ X, which is dense in X (Convince yourself that R and C are separable.). Show
that (c0, ‖·‖∞) is separable, but (`∞, ‖·‖∞) is not.

Exercise 3 (10 points). Show, that there exist discontinuous, linear functionals on every
infinite-dimensional normed space V .

Exercise 4 (10 points). Let E be a normed space and E ′ its dual. Show that the norm
on E is given by

‖x‖ = sup
{
|f(x)|

∣∣ f ∈ E ′, ‖f‖ ≤ 1
}
.

Furthermore, the supremum is a maximum, i.e. for x ∈ E there is a f ∈ E ′ such that
‖f‖ = 1 and f(x) = ‖x‖.
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Exercise 5 (10 points). We consider the Banach space `∞R of real-valued bounded se-
quences together with the supremum-norm. Show that q : `∞R → R, given by the limes
superior q((an)) = lim supn→∞an, is a sublinear functional. Deduce that there is a boun-
ded, linear functional L : `∞R → R with

lim infn→∞an ≤ L((an)) ≤ lim supn→∞an.

Additionally show:

• L(1) = 1, where 1 ∈ `∞R is the constant sequence (1)n∈N.

• L((an)) ≥ 0 if all an ≥ 0.

• ‖L‖ = 1.

• If (an)n∈N is a convergent sequence, it holds L((an)) = limn→∞ an.

In some sense, this enables us to define a “limit” for bounded sequences. Restricting L to
convergent sequences gives back the usual limit of sequences.

Exercise 6 (10 points). Show with the help of an example, that, in general, the convex
hull of a compact subset of a normed space is not closed. For this, consider for example
a sequence in (c0, ‖·‖∞) converging to the the constant sequence with value 0.


