

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 3

submission: Tuesday, November 14 2017, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (10 points). Let X be a locally-convex vector space with countably many semi-norms $\{p_0, p_1, \ldots\}$, such that $p_n(x) = 0$ for all $n \in \mathbb{N}_0$ already implies x = 0. Show that

$$d(x,y) = \sum_{n=0}^{\infty} 2^{-n} \frac{p_n(x-y)}{1+p_n(x-y)}$$

defines a metric on X, inducing the same topology as the semi-norm system. Show that in the case $X = \mathcal{C}^{\infty}[0,1]$ with $p_n(f) := ||f^{(n)}||_{\infty}$ (like in Example 1.35(a) of the lecture) the vector space X is complete. (This metric does not come from a norm.) *Hint:* From the Analysis course you (should) know, that the pointwise limit f of a sequence (f_n) of continuous differentiable functions is again differentiable if the sequence (f')

 (f_n) of continuous, differentiable functions is again differentiable if the sequence (f'_n) converges to the function g uniformly. In this case we have f' = g.

Exercise 2 (10 points). A metric space (X, d) is called *separable*, if there is a countable subset $A \subseteq X$, which is dense in X (Convince yourself that \mathbb{R} and \mathbb{C} are separable.). Show that $(c_0, \|\cdot\|_{\infty})$ is separable, but $(\ell^{\infty}, \|\cdot\|_{\infty})$ is not.

Exercise 3 (10 points). Show, that there exist discontinuous, linear functionals on every infinite-dimensional normed space V.

Exercise 4 (10 points). Let E be a normed space and E' its dual. Show that the norm on E is given by

$$||x|| = \sup \{ |f(x)| \mid f \in E', ||f|| \le 1 \}.$$

Furthermore, the supremum is a maximum, i.e. for $x \in E$ there is a $f \in E'$ such that ||f|| = 1 and f(x) = ||x||.

please turn the page

Exercise 5 (10 points). We consider the Banach space $\ell_{\mathbb{R}}^{\infty}$ of real-valued bounded sequences together with the supremum-norm. Show that $q : \ell_{\mathbb{R}}^{\infty} \to \mathbb{R}$, given by the limes superior $q((a_n)) = \lim \sup_{n \to \infty} a_n$, is a sublinear functional. Deduce that there is a bounded, linear functional $L : \ell_{\mathbb{R}}^{\infty} \to \mathbb{R}$ with

$$\liminf_{n \to \infty} a_n \le L((a_n)) \le \limsup_{n \to \infty} a_n.$$

Additionally show:

- L(1) = 1, where $1 \in \ell_{\mathbb{R}}^{\infty}$ is the constant sequence $(1)_{n \in \mathbb{N}}$.
- $L((a_n)) \ge 0$ if all $a_n \ge 0$.
- ||L|| = 1.
- If $(a_n)_{n \in \mathbb{N}}$ is a convergent sequence, it holds $L((a_n)) = \lim_{n \to \infty} a_n$.

In some sense, this enables us to define a "limit" for bounded sequences. Restricting L to convergent sequences gives back the usual limit of sequences.

Exercise 6 (10 points). Show with the help of an example, that, in general, the convex hull of a compact subset of a normed space is not closed. For this, consider for example a sequence in $(c_0, \|\cdot\|_{\infty})$ converging to the the constant sequence with value 0.